•  
  •  
 

Turkish Journal of Chemistry

DOI

10.55730/1300-0527.3650

Abstract

This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L–1 phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L–1 phosphate buffer solution (PBS) with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0–50.0 μg mL–1 (3.7 × 10–6–1.8 × 10–4 mol L–1), with a limit of detection (LOD) of 0.29 μg mL–1 (1.1 × 10–6 mol L–1). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.

Keywords

Tolcapone, boron-doped diamond electrode, voltammetric techniques, pharmaceutical form

First Page

184

Last Page

194

Included in

Chemistry Commons

Share

COinS