•  
  •  
 

Turkish Journal of Chemistry

DOI

10.55730/1300-0527.3437

Abstract

In this study, olive oil residue (OR) biomass was pyrolyzed in the presence of bulk MgO (B-MgO), nano-MgO (N-MgO), bulk ZnO (B-ZnO)), and nano-ZnO (N- ZnO) metal oxides at different temperatures (400, 600, and 800 ºC). Significant results were obtained in terms of synthesis gas formation and CO2 reduction. The efficiency distribution of the products obtained as a result of the metal oxide-based pyrolysis process and the effects of metal oxides were examined in detail. Nanometal oxides were synthesized by the hydrothermal method. Characterization of metal oxides was carried out by Brunauer?Emmett?Teller (BET), x-ray powder diffraction (XRD) analysis and scanning-electron microscopy-energy dispersive x-ray (SEM-EDX) techniques. The metal concentration of OR biomass was detected via the x-ray fluorescence (XRF) technique. Tar product properties were evaluated by gas chromatographymass spectrometry (GC-MS) and Fourier transform-infrared spectroscopy (FT-IR) analyzes. Analysis results show that pyrolytic tar is very similar to diesel and gasoline as it contains significant concentrations of aliphatic and aromatic hydrocarbons in composition. In addition, the composition of noncondensable gaseous products was determined by micro gas chromatography (micro-GC) analysis.

Keywords

Olive oil residue, catalytic pyrolysis, synthesis gas, nanoparticles, ZnO, MgO

First Page

1306

Last Page

1315

Included in

Chemistry Commons

Share

COinS