Turkish Journal of Chemistry
DOI
10.55730/1300-0527.3427
Abstract
CO adsorption on the Cu(211) surface was investigated using energy, geometry and vibrational data, which were produced through periodic DFT computations. Adsorption on the (111) terrace, as well as the previously reported top and bridge sites of the step-edges, was studied at 0.25, 0.33, 0.50, 0.66, 0.75, and 1.00 monolayer (ML) CO coverage. Results showed that up to and including 0.50 ML, on-top or bridge adsorption is preferred on the step-edges. When 0.50 ML is exceeded, top-bridge alternating patterns become feasible on the step edges along with possible shifts towards the terrace. Several feasible patterns were identified at 0.66, 0.75, and 1.00 ML. Like step-edge adsorptions, alternating patterns on the terrace sites were found feasible at higher coverages. For all the studied cases, highest adsorption energies were found for the step-edge positions. In general, coordination number had a stronger effect than coverage on the calculated properties.
Keywords
CO adsorption, Cu(211), DFT, adsorption energy, vibration, work function
First Page
1199
Last Page
1209
Recommended Citation
ÖZBEK, MURAT OLUŞ
(2022)
"A theoretical study of CO adsorption on Cu(211) surface with coverage effects,"
Turkish Journal of Chemistry: Vol. 46:
No.
4, Article 23.
https://doi.org/10.55730/1300-0527.3427
Available at:
https://journals.tubitak.gov.tr/chem/vol46/iss4/23