•  
  •  
 

Turkish Journal of Chemistry

DOI

10.55730/1300-0527.3421

Abstract

The synthesis of fluorescent carbon quantum dots (CQDs) and their applications have attracted great attention due to their excellent properties. Especially, the unique visible-light absorption and photo-induced electron transfer properties make CQDs available in photocatalytic degradation of organic dye pollutants in water resources. Herein, we synthesized nondoped CQDs and boron-doped CQDs (B-CQDs) by hydrothermal method and compared their photocatalytic degradation activity of methylene blue (MB) and methyl red (MR) dyes under visible light irradiation. The characterization outcomes showed that the optical and structural properties can be easily improved by doping with hetero-atom, thereby photocatalytic performance. As expected, the photodegradation performance of both organic dyes in model solutions by B-CQDs was higher than that of CQDs. MB and MR dyes were photodegraded over 95% by B-CQDs in 90 and 120 min visible light irradiation, respectively. Eventually, the results revealed that nondoped CQDs and B-CQDs are excellent candidates for the degradation of organic dyes because of their high photocatalytic performance under visible light illumination.

Keywords

Carbon quantum dots, hetero-atom doping, photocatalytic degradation, methylene blue, methyl red

First Page

1128

Last Page

1136

Included in

Chemistry Commons

Share

COinS