•  
  •  
 

Turkish Journal of Chemistry

DOI

10.55730/1300-0527.3312

Abstract

To be used as Na-ion battery anodes, hard carbon electrodes are synthesized from biomass, explicitly hazelnut shell (HS): via hydrothermal carbonization (HTC) followed by further pyrolysis at different temperatures (500, 750, 1000 °C). Then, the resulting hazelnut shell-based hard carbons are investigated using various methods including Fourier-transform infrared spectroscopy, scanning electron microscope, X-ray diffraction, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The effects of binders (PVdF, Na-alginate, CMC, and PAA) on electrochemical performance are determined. The obtained composite electrodes with different binders are tested in sodium half-cell configurations. A strong correlation is recognized between carbonization temperature and electrochemical performances and structural characteristics. The better cycling performance is accomplished with the electrode carbonized at 1000 °C with Na-alginate binder. After 100 cycles, specific capacity of 232 mAh × g-1 at 0.1C current density is achieved. This work represents an economical and feasible process to convert hazelnut shells into hard carbon.

First Page

356

Last Page

366

Included in

Chemistry Commons

Share

COinS