Turkish Journal of Chemistry
DOI
10.3906/kim-2104-8
Abstract
Photodynamic therapy (PDT) applications enable light-controlled activation of drug candidates instead of their constitutive activities to prevent undesired side effects associated with their constant activities. A specific wavelength of light is utilized to enable electron mobility in the chemical structure, which results in differential activities that may alter cell viability and cellular functions. Canonical photodynamic therapy applications mostly focus on cytotoxicity-based antimicrobial and anticancer properties of the PDT agents. In this study, we focused on subtoxic concentrations of three different molecules containing polyoxyethylene group and examined their antiinflammatory activities on stimulated mammalian macrophages. Stimulated macrophages produce proinflammatory cytokines TNF and IL6. In the presence of a light source, our PDT agents were activated for 5 and 10 min during their application to the macrophages. Based on the ELISA results, the compounds had anti-inflammatory PDT activities. Trypan blue staining results suggest that these derivatives exerted their activities without leading to cytotoxicity. Our results suggest noncanonical PDT applications of these derivatives that can alter cellular activities without leading to cell death.
Keywords
Inflammation, perylene, photodynamic therapy, macrophages, antiinflammatory compounds
First Page
1752
Last Page
1760
Recommended Citation
HAKLI, ÖZGÜL; OCAKOĞLU, KASIM; and AYAZ, FURKAN
(2021)
"Antiinflammatory photodynamic therapy potential of polyoxyethylene-substituted perylene diimide, nitrocatechol, and azo dye,"
Turkish Journal of Chemistry: Vol. 45:
No.
6, Article 7.
https://doi.org/10.3906/kim-2104-8
Available at:
https://journals.tubitak.gov.tr/chem/vol45/iss6/7