Turkish Journal of Chemistry




This study was conducted to investigate the physicochemical, phytochemical, in vitro antidiabetic and anticancer potential of Olea ferruginea R bark. After extraction using Soxhlet, in vitro antidiabetic and cytotoxic activity on human hepatocellular carcinoma (HepG2) cells was assessed by nonenzymatic glycosylation of hemoglobin assay, alpha-amylase inhibition assay, glucose uptake by yeast cells, and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, respectively, and gene expression via real-time polymerase chain reaction. Primary and secondary metabolites were present in the extractants; polyphenols (35.61 ± 0.03) and flavonoids (64.33 ± 0.35) in the chloroform; and polysaccharides in the ethanol (268.75 ± 0.34), and glycosaponins (78.01 ± 0.07) in the methanol. The chloroform extract exhibited maximum antidiabetic potential, showing inhibition of nonenzymatic glycosylation of hemoglobin (65%), and alpha-amylase inhibition (32%) with maximum percent glucose uptake by the ethanol extract (78%). Only the ethanol extract had dose-dependent cytotoxic potential against the HepG2 cells. After 24-h exposure to the ethanol-extract, the expression of protein kinase B (Akt) remained unchanged, while the expression of B-cell lymphoma 2 (BCL2) and BCL2 associated X (BAX) changed significantly. After 48-h exposure, the expression of Akt decreased significantly, while that of BCL2 and BAX increased significantly. Olea ferruginea R bark possessed in vitro antidiabetic potential and anticancer/cytotoxic effects, attributable to the decline in the prosurvival signals of the Akt signaling pathway.


Olea ferruginea R, cytotoxicity, MTT, Akt, BAD, antidiabetic

First Page


Last Page


Included in

Chemistry Commons