•  
  •  
 

Turkish Journal of Chemistry

DOI

10.3906/kim-1907-10

Abstract

The nanostructuring of hydroxyl-substituted diazacrown-ether (DC) by silver nanoparticles was obtained by green synthesis method in order to increase the antibacterial activity of silver nanoparticles. The synthesized DC, nanoparticles, and nanosupramolecular complex (Ag@DC) were studied by TEM, powder-XRD, and NMR, IR, and UV spectroscopy methods. The Ag@DC nanostructures were uniform and their sizes ranged from 8 to 18 nm. IR and UV spectra revealed the noncovalent formation of the nanosupramolecular complex. The antibacterial activities of the prepared active agents were investigated on gram-positive and gram-negative bacteria by twofold microdilution method. Ultrastructural study by TEM was performed on \textit{E. coli} BDU12 after treatment with Ag@DC. The results showed the improvement of the antibacterial action of Ag@DC compared to silver nanoparticles (E. coli BDU12 - 32 times, A. baumannii BDU32 - 16 times, K. pneumoniae BDU44 and P. aeruginosa BDU49 - 4 times, S. aureus BDU23 - 512 times). Chelating by DC significantly improved the antibacterial effects of the silver nanoparticles on gram-positive and gram-negative bacteria due to the ionophoric behavior of the crown ethers.

Keywords

Silver nanoparticles, diazacrown ether, transmission electron microscopy, ultrastructural microscopy, antibacterial activity

First Page

1711

Last Page

1721

Included in

Chemistry Commons

Share

COinS