•  
  •  
 

Turkish Journal of Chemistry

DOI

10.3906/kim-1903-32

Abstract

Carbon nanotubes have emerged as highly promising theranostic agents due to their unique structural/physical features, high surface area, and high drug-loading capacity. The high cytotoxicity of carbon nanotubes can be eliminated by noncovalent coating using hydrophilic polymers. We investigated the adsorption of long pyrene functionalized polyethylene glycol (PEG) chains, PEG$_{2000}$ and PEG$_{5000}$, on a single-walled carbon nanotube (SWNT) from a crowded solution. Full-atom molecular dynamics simulations in explicit water were used to mimic the experimental conditions of noncovalent PEGylation with a stoichiometry of one SWNT to ten pyrene-PEG. Although the diffusional behavior of the pyrene molecules still attached to the polymers did not change according to chain length, the adsorption rate for pyrene-PEG$_{2000}$ to the SWNT was higher than that for pyrene-PEG$_{5000}$ chains. Here longer chains sterically hindered the adsorption of pyrene groups on the SWNT surface. Once adsorbed, pyrene molecules stayed on the SWNT surface even though they frequently adopted different orientations that may weaken their $\pi -\pi $ stacking interactions with the nanotube surface.

Keywords

Adsorption, interaction energy, PEGylation, controlled drug delivery

First Page

1159

Last Page

1169

Included in

Chemistry Commons

Share

COinS