•  
  •  
 

Turkish Journal of Chemistry

DOI

10.3906/kim-1801-58

Abstract

An enzymeless electrochemical sensor for detection of low amounts of H$_{2}$O$_{2}$ with the aid of Ag nanoparticles supported on conducting poly(vinylferrocene) (PVF) film was developed. Experimental results revealed that contribution of Ag nanoparticles led to remarkable improvement by means of reduction potential and reduction current. Influence of experimental parameters (i.e. polymeric film thickness, concentration of Ag precursor, immersion time in precursor solution, reduction time, and reduction potential) were investigated. The Ag/PVF-modified electrode system was characterized physically by scanning electron microscopy. The results revealed that the sensor developed was easy-to-prepare, economic, selective, and sensitive, with a fast response time of 3 s. The linear concentration range of the sensor was 0.1-50 mM, with a sensitivity of 14.1 $\mu $A mM$^{-1}$ and a limit of detection of 0.94 $\mu $M. Finally, interference effects of uric acid, ascorbic acid, dopamine, and glucose molecules were studied and no significant interference was observed at physiological levels.

Keywords

Hydrogen peroxide determination, electrochemical sensor, poly(vinylferrocene), silver nanoparticles, modified electrode

First Page

1755

Last Page

1767

Included in

Chemistry Commons

Share

COinS