Turkish Journal of Chemistry




The therapeutic applications of 1,2,4-triazoles motivated us to synthesize some new derivatives. Two series of $S$-substituted derivatives (8a-8j, 12a-12i) of 5-$\{$1-[(4-chlorophenyl)sulfonyl]-3-piperidinyl$\}$-4-phenyl-4$H$-1,2,4-triazol-3-thiol (6) have been synthesized and evaluated for their biological potential. Using 4-chlorobenzene sulfonyl chloride (1) and ethyl piperidine-3-carboxylate (2), ethyl 1-[(4-chlorophenyl)sulfonyl]piperidine-3-carboxylate (3) was synthesized and converted into 3,4,5-trisubstituted 1,2,4-triazole (6) through formation of the corresponding carbohydrazide (4) and hydrazinecarbothioamide (5). Compound 6 was transformed into 8a-8j by alkyl halides (7a-7j) and into 12a-12i by $N$-aralkyl/aryl-2-bromoacetamides (11a-11i) in an aprotic solvent. The electrophiles, 11a-11i, were synthesized by gearing up $N$-substituted aralkyl/aryl amines (10a-10i) with 2-bromoacetyl bromide (9) under dynamic pH control by aqueous sodium carbonate. Structures were elucidated through the spectral techniques of IR, EIMS, $^{1}$H NMR, and $^{13}$C NMR. Most of the synthesized derivatives were found to be potent inhibitors of $\alpha $-glucosidase enzyme and even better than acarbose. Acarbose is a reference standard and is a commercially available $\alpha $-glucosidase inhibitor to treat patients with type II diabetes. The low hemolytic activity also emphasized the potential of the synthesized compounds as new drug candidates.

First Page


Last Page


Included in

Chemistry Commons