•  
  •  
 

Turkish Journal of Chemistry

DOI

10.3906/kim-1406-19

Abstract

A Castro--Stephens coupling reaction between metal-free 3(2),8(7)-dibromo- 2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and (ferrocenylethynyl)copper resulted in the formation of copper 2(3),7(8),12(13), 17(18)-tetra-tert-butyl-3(2), 8(7)-di(ferrocenylethynyl)-5,10,15,20-tetraazaporphyrin and copper 2(3),7(8),12(13),17(18)-tetra-tert-butyl-3(2)-ferrocenylethynyl-5, 10,15,20-tetraazaporphyrin, which were separated in the form of 2 positional isomers along with copper 3(2)-bromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and copper 2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin. A similar reaction with metal-free 3(2),8(7),13(12), 18(17)-tetrabromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin resulted in only a trace amount of 3(2),8(7),13(12)-tribromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-18(17) -ferrocenylethynyl-5,10,15,20-tetraazaporphyrin, while no products with larger number of organometallic substituents were observed. Direct coupling between ferrocenelithium and 3(2),8(7)-dibromo-2(3),7(8),12(13),17(18)-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin resulted in a debromination reaction accompanied by very minor dimerization of the tetraazaporphyrin core, which was explained based on the steric properties of the parent tetraazaporphyrin. The target compounds were characterized using APCI mass spectrometry, UV-vis, and MCD spectroscopy, while the electronic structure of ferrocenylethyl-containing products was predicted by DFT approach. X-ray structures of individual positional isomers of copper 2-bromo-3,7,12,18-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin and 3, 7, 12,18-tetrabromo-2,8,13,17-tetra-tert-butyl-5,10,15,20-tetraazaporphyrin were also discussed.

First Page

1027

Last Page

1045

Included in

Chemistry Commons

Share

COinS