Turkish Journal of Chemistry




A novel green approach for the synthesis of silver nanoparticles using erythromycin as a reducing/capping agent is presented. Erythromycin-derived silver nanoparticles were characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Monodispersed silver nanoparticles showed excellent and promising catalytic activity for reduction of 3 differently charged dyes (eosin B, methylene blue, and rose bengal) in the presence of NaBH_4. The study revealed that 100% reduction of these dyes can be achieved efficiently in just 150--250 s. They were easily recovered from the reaction medium and were reused 5 times, showing enhanced catalytic potential each time. Glass-supported Ag(0) NPs (0.15 mg) were removed by washing sequentially and reused 5 times for catalytic reduction of these dyes at 10 \mu M. All dyes were successfully reduced by erythromycin-derived silver nanoparticles up to 7%. Based upon these results, it was concluded that erythromycin-derived silver nanoparticles are a novel, rapid, and highly economical alternative for environmental protection against pollution caused by dyes and can be extended for the control of other reducible contaminants.

First Page


Last Page


Included in

Chemistry Commons