Turkish Journal of Electrical Engineering and Computer Sciences
Image Enhacement and Fusion with the Random Neural Network
DOI
-
Abstract
Enhancing image quality and combining observations into a coherent description are essential tools in various image processing applications such as multimedia publishing, target recognition, and medical imaging. In this paper we propose two novel approaches for image enlargement and image fusion using the Random Neural Network (RNN) model [1,2,3,4], whic has already been successfully applied to the problems such as still and moving image compression [5], and image segmentation [6]. The advantage of the RNN model is that is closer to biophysical reality and mathematically more tractable than standard neural methods, especially when used as a recurrent structure.
Keywords
Random Neural Network Model, Image Enlargement and Enhancement, Sensor Image Fusion.
First Page
65
Last Page
77
Recommended Citation
BAKIRCIOĞLU, Hakan; GELENBE, Erol; and KOÇAK, Taşkın (1997) "Image Enhacement and Fusion with the Random Neural Network," Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 5: No. 1, Article 4. Available at: https://journals.tubitak.gov.tr/elektrik/vol5/iss1/4