Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.55730/1300-0632.4000
Abstract
This paper proposes an innovative structure for DC-DC converters with high buck gain by using a lower number of elements. The converter provides highly efficient output power and an extended output voltage range. In addition, the distribution of output current between two inductors and the soft-switching capability of the power switches have made the converter suitable for applications that require high output current. All power switches accomplish the ZVZCS (zero-voltage and zero-current switching) condition with the aid of a small auxiliary inductor (Lx), which charges and discharges parallel capacitors of main switches to provide soft-switching conditions. Thus, the switching losses associated with power switches are considerably reduced. Additionally, the output voltage ratio of the proposed converter can be changed by varying the switching frequency and duty cycle. In addition, the variation range of output voltage has been expanded compared to other topologies, allowing for a wider output voltage range. A coupled inductor is utilized to establish a relationship between the output gain and the turn ratios, resulting in a wider output voltage gain range. Eventually, a theoretical analysis is conducted and a 200-watt experimental prototype has been implemented to illustrate the proposed converter's efficacy. It converts a voltage input (300 V) to a voltage output (10 V).
Keywords
Buck, DC-DC converter, nonisolated, dual switches, voltage stress
First Page
533
Last Page
549
Recommended Citation
SANI, SAJAD GHABELI; BANAEI, MOHAMAD REZA; and HOSSEINI, SEYED HOSSEIN
(2023)
"Analysis and implementation of a new high-buck DC-DC converter with interleaved output inductors and soft switching capability,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 31:
No.
3, Article 4.
https://doi.org/10.55730/1300-0632.4000
Available at:
https://journals.tubitak.gov.tr/elektrik/vol31/iss3/4
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons