Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.55730/1300-0632.3933
Abstract
A community is a group of people that shares something in common. The definition of the community can be generalized as things that have common properties. By using this definition, community detection can be used to solve different problems in various areas. In this study, we propose a new network-based community detection algorithm that can work on different types of datasets. The proposed algorithm works on unweighted graphs and determines the weight by using cosine similarity. We apply a bottom-up approach and find the disjoint communities. First, we accept each node as an independent community. Then, the merging process is applied by using the modularity value as a stopping criterion. We use real datasets and evaluate the algorithm with modularity, normalized mutual information, and performance metrics. In addition, we test our algorithm by using central nodes. We also take into consideration the number of communities in the case they are known. The proposed algorithm has high modularity and accuracy in different datasets.
Keywords
Community detection, disjoint communities, cosine similarity, modularity, network-based
First Page
2190
Last Page
2205
Recommended Citation
ÇETİN, PELİN and AMRAHOV, ŞAHİN EMRAH
(2022)
"A new network-based community detection algorithm for disjoint communities,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 30:
No.
6, Article 13.
https://doi.org/10.55730/1300-0632.3933
Available at:
https://journals.tubitak.gov.tr/elektrik/vol30/iss6/13
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons