Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.55730/1300-0632.3911
Abstract
We generated advertisement creatives programmatically using deep neural networks. A landing page contains relevant text data, which can be used for generating advertisement creatives, i.e. ads. We treated the ad generation task as a text summarization problem and built a sequence to sequence model. In order to assess the validity of our approach, we conducted experiments on four datasets. Our empirical results showed that our model generated relevant ads on a template-based dataset with moderate hyperparameters. Training the model with more content increased the performance of the model, which we attributed to rigorous hyperparameter tune-up. The choice of word embedding used in the representation of the input altered the model's performance. When the source and the target shared common sequences during training, the model produced the best results.
Keywords
Online advertising, ad creative generation, deep learning
First Page
1882
Last Page
1896
Recommended Citation
ÇOĞALMIŞ, KEVSER NUR and BULUT, AHMET
(2022)
"Generating ad creatives using deep learning for search advertising,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 30:
No.
5, Article 14.
https://doi.org/10.55730/1300-0632.3911
Available at:
https://journals.tubitak.gov.tr/elektrik/vol30/iss5/14
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons