•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-2104-184

Abstract

Deep learning in medical imaging has revolutionized the way we interpret medical data, as high computational devices' capabilities are far more than their creators. With the pandemic causing havoc for the second straight year, the findings in our paper will allow researchers worldwide to use and create state-of-the-art models to detect affected persons before it reaches the R number. The paper proposes an automated diagnostic tool using the deep learning models on chest x-rays as an input to reach a point where we surpass this pandemic (COVID-19 disease). A deep transfer learning-based model for automatic detection of COVID-19 from chest x-rays using the Inception-V3 model is proposed, in which we added flattening, node dropping, normalization, and dense layer. The proposed architecture is compared with existing state-of-the-art ImageNet models. The model?s efficacy is tested on three different COVID-19 radiography datasets with three classes: COVID, normal, and viral pneumonia. The proposed model has reached an accuracy of 97.7%, 84.95%, and 97.03% on the mentioned datasets, respectively. The proposed work introduces the deep neural networks applied to medical images to analyze image enhancement techniques and emphasize the field's clinical aspects.

Keywords

COVID-19, chest X-ray, computer vision, digital ımage processing, transfer learning

First Page

2663

Last Page

2679

Share

COinS