•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-1907-28

Abstract

Piezo actuated systems are promising solutions for precision positioning applications. In this paper, a piezoelectric actuator is modeled as a second-order system using the Dahl hysteresis model and the system parameters have been identified from experimental data. The modified internal model control (M-IMC) approach is presented, which not only improves control performance but also reduces associated controller hardware resources. System dead time is approximated using first-order Padé expansion and the proposed Smith predictor-based M-IMC for piezoelectric actuators is seen to offer satisfactory stable control response even for plants with large dead time. The control performance of the M-IMC has been examined for the piezo actuator system against different set point tracking inputs in the presence of a wide range of external disturbances such as plant parameter mismatch, white noise perturbation, and time delay. Simulation results depict the efficacy and versatility of M-IMC in terms of decreased overshoot and settling time compared to traditional IMC and PID designs.

Keywords

Piezoelectric, internal model control, disturbance, hysteresis, nonlinearity, Dahl model

First Page

1495

Last Page

1508

Share

COinS