Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-2001-62
Abstract
In supervised classification, obtaining nonlinear separating functions from an algorithm is crucial for prediction accuracy. This paper analyzes the polyhedral conic functions (PCF) algorithm that generates nonlinear separating functions by only solving simple subproblems. Then, a revised version of the algorithm is developed that achieves better generalization and fast training while maintaining the simplicity and high prediction accuracy of the original PCF algorithm. This is accomplished by making the following modifications to the subproblem: extension of the objective function with a regularization term, relaxation of a hard constraint set and introduction of a new error term. Experimental results show that the modifications provide %12 better generalization on average and up to 10x faster training. This paper also contributes to the literature by providing detailed comparisons of the other classification algorithms that use polyhedral conic functions for the first time.
Keywords
Classification, conic functions, machine learning, optimization
First Page
2735
Last Page
2749
Recommended Citation
CEYLAN, GÜRHAN and ÖZTÜRK, GÜRKAN
(2020)
"Revised polyhedral conic functions algorithm for supervised classification,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 28:
No.
5, Article 24.
https://doi.org/10.3906/elk-2001-62
Available at:
https://journals.tubitak.gov.tr/elektrik/vol28/iss5/24
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons