Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1906-60
Abstract
The Mineral Liberation Analyzer (MLA) can be used to obtain mineral maps from backscattered electron (BSE) images of particles. This paper proposes an alternative methodology that includes random forest classification, a prospective machine learning algorithm, to develop mineral maps from BSE images. The results show that the overall accuracy and kappa statistic of the proposed method are 97% and 0.94, respectively, proving that random forest classification is accurate. The accuracy indicators also suggest that the proposed method may be applied to classify minerals with similar appearances under BSE imaging. Meanwhile, random forest predicts fewer middling particles with binary and ternary composition, but the MLA predicts more middling particles only with ternary composition. These discrepancies may arise because the MLA, unlike random forest, may also measure the elemental compositions of mineral surfaces below the polished section.
Keywords
Random forest, Mineral Liberation Analyzer, backscattered electron images, mineral map, confusion matrix
First Page
1030
Last Page
1043
Recommended Citation
CAMALAN, MAHMUT and ÇAVUR, MAHMUT
(2020)
"Development of a supervised classification method to construct 2D mineral mapson backscattered electron images,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 28:
No.
2, Article 30.
https://doi.org/10.3906/elk-1906-60
Available at:
https://journals.tubitak.gov.tr/elektrik/vol28/iss2/30
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons