•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-1805-108

Abstract

Global maximum operating point (GMOP) tracking is an important requirement of solar photovoltaic (PV) systems under partial shading conditions (PSCs). Though the perturb and observe algorithm is simple and effective, it fails to recognize the GMOP. This paper explores the application of the firefly algorithm (FA) to the maximum power point tracking (MPPT) problem of PV systems. In order to determine the shortest path to reach the GMOP under various PSCs, a new fast convergence firefly algorithm (FA) is proposed. Additionally, the change in firefly position is limited to a maximum value identified based on the characteristics of the PSC. The fast convergence method is guaranteed to find the GMOP, avoiding the local operating point obstacle through a repeated space search technique. Using MATLAB, the algorithm is implemented on a model PV system. An experimental 300-W PV system is developed to validate the operating point of the PV system under various PSCs. The proposed method is tested on a 5-kW solar power plant. The results demonstrate that the proposed MPPT algorithm outperforms particle swarm optimization, FA-based MPPTs, and other methods available in the literature.

First Page

4640

Last Page

4658

Share

COinS