•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-1902-18

Abstract

In today's business conditions, where business activities are spreading over a wide geographical area, fraud auditing processes have crucial importance especially for the retailing sector which has a high branch network. In the retailing sector, especially purchasing processes are subject to high fraud risks. This paper shows that it is possible to detect fraudulent processes by applying data mining techniques on operational data related to purchasing activities. Within this scope, in order to detect the fraudulent purchasing operations, support vector machine (SVM) models with different kernels and artificial neural networks methods have been used and successful results have been achieved. The results of the two methods have been examined comparatively and it shows that optimized SVM classifier outperforms others. Besides, in this study, it is presumed that the detected fraud data can be proactively used in the struggle against fraud with fraud-governance risk and compliance software by converting it into scenario analysis.

Keywords

Retail sector, risk management, purchase fraud, governance risk and compliance

First Page

3633

Last Page

3647

Share

COinS