•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-1808-130

Abstract

Camera-traps are motion triggered cameras that are used to observe animals in nature. The number of images collected from camera-traps has increased significantly with the widening use of camera-traps thanks to advances in digital technology. A great workload is required for wild-life researchers to group and label these images. We propose a system to decrease the amount of time spent by the researchers by eliminating useless images from raw camera-trap data. These images are too bright, too dark, blurred, or they contain no animals. To eliminate bright, dark, and blurred images we employ techniques based on image histograms and fast Fourier transform. To eliminate the images without animals, we propose a system combining convolutional neural networks and background subtraction. We experimentally show that the proposed approach keeps 99% of photos with animals while eliminating more than 50% of photos without animals. We also present a software prototype that employs developed algorithms to eliminate useless images.

First Page

2395

Last Page

2411

Share

COinS