•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-1804-18

Abstract

This paper introduces a new speech enhancement algorithm based on the adaptive threshold of intrinsic mode functions (IMFs) of noisy signal frames extracted by empirical mode decomposition. Adaptive threshold values are estimated by using the gamma statistical model of Teager energy operated IMFs of noisy speech and estimated noise based on symmetric Kullback--Leibler divergence. The enhanced speech signal is obtained by a semisoft thresholding function, which is utilized by threshold IMF coefficients of noisy speech. The method is tested on the NOIZEUS speech database and the proposed method is compared with wavelet-shrinkage and EMD-shrinkage methods in terms of segmental SNR improvement (SegSNR), weighted spectral slope (WSS), and perceptual evaluation of speech quality (PESQ). Experimental results show that the proposed method provides a higher SegSNR improvement in dB, lower WSS distance, and higher PESQ scores than wavelet-shrinkage and EMD-shrinkage methods. The proposed method shows better performance than traditional threshold-based speech enhancement approaches from high to low SNR levels.

First Page

1355

Last Page

1370

Share

COinS