•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

10.3906/elk-1804-208

Abstract

Small image acquisition devices like digital single lens reflex (DSLR) cameras most commonly use Joint Photographic Expects Group (JPEG) coding standard for lossy compression. Although JPEG is a simple coding standard, its compression efficiency is very low as compared to any typical state-of-the-art image coding standards like set partitioning in hierarchical trees (SPIHT). In this paper, a novel state-table-based SPIHT (STS) algorithm and its field programmable gate array (FPGA) implementation is proposed. The STS uses two small state-tables and two extremely small lists. The STS not only provides better compression efficiency than the state-of-the-art JPEG 2000 at high bit rates but also requires very small memory to hold the state-tables and lists in comparison to SPIHT. On average STS requires 0.86\% of the memory needed by SPIHT when evaluated for image sizes ranging from 4 Mpixels to 40 Mpixels. The implementation results show that STS consumes very less FPGA area in comparison to SPIHT-based architectures. The dynamic power dissipation of STS is also less than that of JPEG-like compression standards. This makes our proposed algorithm a better candidate for compression in low-power, low-memory digital image acquisition devices.

Keywords

Set partitioning in hierarchical trees, very large-scale integration, image compression, dynamic power dissipation, field programmable logic array, digital single lens reflex

First Page

2927

Last Page

2942

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 4
  • Usage
    • Downloads: 94
    • Abstract Views: 87
  • Captures
    • Readers: 3
see details

Share

COinS