Turkish Journal of Electrical Engineering and Computer Sciences
Data clustering using eDE, an enhanced differential evolution algorithm with fuzzy c-means technique
DOI
10.3906/elk-1706-104
Abstract
Clustering is the way toward sorting out items into groups whose individuals are comparative somehow. It is a gathering of articles that are intelligent inside, yet unmistakably not at all like the items having a place with different groups. Clustering of data plays a major part in efficient customer segmentation, organization of documents, information retrieval, extraction of topics, classification, collaborative filtering, visualization, and indexing. In the area of information retrieval systems, evolutionary algorithms work in a robust and efficient manner for clustering. To overcome the problem of local maxima, various nature-inspired metaheuristic algorithms like particle swarm optimization, artificial bee colony, and firefly algorithms are considered. In this work, a variant of a differential evolution algorithm named enhanced differential evolution (eDE) is created. eDE is incorporated with the fuzzy c-means technique to perform clustering of data.
Keywords
Soft cluster, fuzzy c-means, membership function, validation index
First Page
867
Last Page
881
Recommended Citation
RAMADAS, MEERA and ABRAHAM, AJITH
(2018)
"Data clustering using eDE, an enhanced differential evolution algorithm with fuzzy c-means technique,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 26:
No.
2, Article 20.
https://doi.org/10.3906/elk-1706-104
Available at:
https://journals.tubitak.gov.tr/elektrik/vol26/iss2/20
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons