Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1705-167
Abstract
In this paper, an adaptive tracking controller based on a three-layer neural network (NN) with an online weight tuning algorithm is proposed for a nonholonomic wheeled mobile robot in the presence of unknown wheel slips, model uncertainties, and unknown bounded disturbances. The online weight tuning algorithm is modified from the backpropagation with an e-modification term required to assure that the NN weights are bounded. Preliminary neural network offline training is not essential for the weights. Thanks to this proposed controller, the desired tracking performance is achieved where position tracking errors converge to an arbitrarily small neighborhood of the origin regardless of their initial values. According to Lyapunov theory and LaSalle extension, the stability of the whole closed- loop system is ensured to obtain the desired tracking performance. Computer simulations are implemented to certify the validity of the proposed controller.
Keywords
Desired tracking performance, online weight tuning algorithm, position tracking errors, uniformly ultimately bounded, unknown wheel slip
First Page
378
Last Page
392
Recommended Citation
NGUYEN, TINH and LE, LINH
(2018)
"Neural network-based adaptive tracking control for a nonholonomic wheeledmobile robot with unknown wheel slips, model uncertainties, and unknownbounded disturbances,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 26:
No.
1, Article 32.
https://doi.org/10.3906/elk-1705-167
Available at:
https://journals.tubitak.gov.tr/elektrik/vol26/iss1/32
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons