Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1608-147
Abstract
In this paper, a preventive control action that involves both generation rescheduling and load curtailment is proposed for enhancing the dynamic security of large interconnected power systems. The control action is formulated as a security-constrained optimization problem that is solved by mean-variance mapping optimization (MVMO) integrated with a self-adaptive penalization technique and artificial neural networks to develop a fast and effective methodology. The proposed methodology is applied to a 16-generator 68-bus test system to solve the security-constrained optimization problem with both continuous and discrete decision variables. To find a proper and cost-effective solution for the control actions within an acceptable time, dynamic security assessment methodology based on artificial neural networks is integrated into the optimization process for predicting the violations of security constraints brought about by the candidate solutions. The proposed method effectively integrates a variety of popular heuristic optimization algorithms, including MVMO, differential evolution, particle swarm optimization, genetic algorithms, big bang-big crunch, and artificial bee colony. MVMO outperforms all the others in various aspects such as reliability and robustness.
Keywords
Power system security, preventive control, generation rescheduling, load curtailment, heuristic optimization, mean-variance mapping optimization, dynamic security assessment
First Page
3188
Last Page
3200
Recommended Citation
KÜÇÜKTEZCAN, CAVİT FATİH and GENÇ, VEYSEL MURAT İSTEMİHAN
(2017)
"Dynamic security enhancement of power systems using mean-variance mapping optimization,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 25:
No.
4, Article 52.
https://doi.org/10.3906/elk-1608-147
Available at:
https://journals.tubitak.gov.tr/elektrik/vol25/iss4/52
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons