Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1606-191
Abstract
Automatic detection of initial seed points has become an essential step towards delineating coronary arteries in coronary computed tomography angiography (CCTA) images due to image inhomogeneity and other factors. Most coronary segmentation algorithms require user interaction for seed point selection, which may lead to erroneous segmentation. In this study, we present an improved technique of seed detection for coronary segmentation using a thresholded Frangi response. Before computing region of interest (ROI), the proposed method first computes the Frangi response of the complete CCTA volume, followed by thresholding with respect to quantile and median values, and then the ROI selection procedure is applied. Further, this procedure is joined with a feature that is built according to the resemblance among consecutive orthogonal cross-sections. The proposed method was evaluated on nine clinical datasets, and the proposed framework automatically detected coronary seeds accurately and can be used for an accurate delineation of coronary arteries. The obtained results were compared qualitatively and quantitatively by a radiologist, and the proposed method outperformed the previous method with an improvement of 45.9%.
Keywords
Coronary artery disease, coronary computed tomography angiography, region of interest
First Page
2749
Last Page
2760
Recommended Citation
ZAI, SAMMER; ANSARI, MUHAMMAD AHSAN; SONG, SOON-YOUNG; and MOON, YOUNG SHIK
(2017)
"Robust seed detection for coronary arteries segmentation using thresholded Frangi response,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 25:
No.
4, Article 17.
https://doi.org/10.3906/elk-1606-191
Available at:
https://journals.tubitak.gov.tr/elektrik/vol25/iss4/17
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons