Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1601-189
Abstract
The manifold growth of malware in recent years has resulted in extensive research being conducted in the domain of malware analysis and detection, and theories from a wide variety of scientific knowledge domains have been applied to solve this problem. The algorithms from the machine learning paradigm have been particularly explored, and many feature extraction methods have been proposed in the literature for representing malware as feature vectors to be used in machine learning algorithms. In this paper we present a comparison of several feature extraction techniques by first applying them on system call logs of real malware, and then evaluating them using a random forest classifier. In our experiment the HMM-based feature extraction method outperformed the other methods by obtaining an F-measure of 0.87. We also explored the possibility of using ensembles of feature extraction methods, and discovered that combination of HMM-based features with bigram frequency features improved the F-measure by 1.7%.
Keywords
Malware analysis, feature extraction, machine learning
First Page
1173
Last Page
1183
Recommended Citation
IMRAN, MOHAMMAD; AFZAL, MUHAMMAD TANVIR; and QADIR, MUHAMMAD ABDUL
(2017)
"A comparison of feature extraction techniques for malware analysis,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 25:
No.
2, Article 41.
https://doi.org/10.3906/elk-1601-189
Available at:
https://journals.tubitak.gov.tr/elektrik/vol25/iss2/41
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons