Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1408-136
Abstract
This study aims to develop a novel version of bi input-extended Kalman filter (BI-EKF)-based estimation technique in order to increase the number of state and parameter estimations required for speed-sensorless direct vector control (DVC) systems, which perform velocity and position controls of induction motors (IMs). For this purpose, all states required for the speed-sensorless DVC systems, besides the stator resistance $R_{s} $, the rotor resistance $R_{r}$, the load torque $t_{L}$ including the viscous friction term, and the reciprocal of total inertia $1/j_{T}$, are simultaneously estimated by the novel BI-EKF algorithm using the measured phase currents and voltages. The effectiveness of the proposed speed-sensorless DVC systems is tested by simulations under the challenging variations of $R_{s} $, $R_{r} $, $t_{L} $, $j_{T} $, and velocity/position reference. Later, the state and parameter estimations of the novel BI-EKF algorithm are confirmed with real-time experiments in a wide speed range. Finally, in both transient and steady states, a satisfactory estimation and control performance that make this study unique are achieved.
Keywords
Induction motor, extended Kalman filter, sensorless control, rotor-stator resistance estimation, load torque estimation, inertia estimation
First Page
4525
Last Page
4544
Recommended Citation
ZERDALİ, EMRAH and BARUT, MURAT
(2016)
"Novel version of bi input-extended Kalman filter for speed-sensorless control of induction motors with estimations of rotor and stator resistances, load torque, and inertia,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 24:
No.
5, Article 89.
https://doi.org/10.3906/elk-1408-136
Available at:
https://journals.tubitak.gov.tr/elektrik/vol24/iss5/89
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons