•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

Abstract

This study presents a new approach to improve the performance of FastSLAM. The aim of the study is to obtain a more robust algorithm for FastSLAM applications by using a Kalman filter that uses Stirling's polynomial interpolation formula. In this paper, some new improvements have been proposed; the first approach is the square root central difference Kalman filter-based FastSLAM, called SRCD-FastSLAM. In this method, autonomous vehicle (or robot) position, landmarks' position estimations, and importance weight calculations of the particle filter are provided by the SRCD-Kalman filter. The second approach is an improved version of the SRCD-FastSLAM in which particles are improved by a differential evolution (DE) algorithm for reducing the risk of the particle depletion problem. Simulation results are given as a comparison of FastSLAM II, unscented (U)-FastSLAM, SRCD-Kalman filter-aided FastSLAM, SRCD particle filter-based FastSLAM, SRCD-FastSLAM, and DE-SRCD-FastSLAM. The results show that SRCD-based FastSLAM approaches accurately compute mean and precise uncertainty of the robot position in comparison with FastSLAM II and U-FastSLAM methods. However, the best results are obtained by DE-SRCD-FastSLAM, which provides significantly more accurate and robust estimation with the help of DE with fewer particles. Moreover, consistency of the DE-SRCD-FastSLAM is more prolonged than that of FastSLAM II, U-FastSLAM, and SRCD-FastSLAM.

DOI

10.3906/elk-1307-55

Keywords

Simultaneous localization and mapping, square root central difference Kalman filter, Stirling's polynomial interpolation, differential evolution

First Page

994

Last Page

1013

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 7
  • Usage
    • Downloads: 76
    • Abstract Views: 35
  • Captures
    • Readers: 12
see details

Share

COinS