Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1205-22
Abstract
There are many cases in real inventory systems where more than one objective must be optimized. The main purpose of this research is to develop a multiobjective joint replenishment problem (JRP), where one objective is the minimization of the total inventory investment and another is the minimization of the total inventory ordering and holding costs. To solve the suggested model, 3 algorithms are proposed. In the first algorithm, the existing RAND method, called the best heuristic for solving the JRP, is modified and a new heuristic algorithm is developed to be applicable to the JRP with 2 objectives. The second algorithm is a multiobjective genetic algorithm that has shown good performance for solving the JRP. Finally, a third algorithm is developed, using a combination of the 2 previous ones. The performances of these algorithms are then compared. Running the programs shows good performance in solving the 9200 randomly produced problems.
Keywords
Joint replenishment problem, multiobjective, modified RAND, genetic algorithm
First Page
1338
Last Page
1353
Recommended Citation
YOUSEFI, OMMOLBANIN and SADJADI, SEYED JAFAR
(2014)
"Solving a new bi-objective joint replenishment inventory model with modified RAND and genetic algorithms,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 22:
No.
5, Article 18.
https://doi.org/10.3906/elk-1205-22
Available at:
https://journals.tubitak.gov.tr/elektrik/vol22/iss5/18
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons