Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1202-89
Abstract
Since feed-forward artificial neural networks (FFANNs) are the most widely used models to solve real-life problems, many studies have focused on improving their learning performances by changing the network architecture and learning algorithms. On the other hand, recently, small-world network topology has been shown to meet the characteristics of real-life problems. Therefore, in this study, instead of focusing on the performance of the conventional FFANNs, we investigated how real-life problems can be solved by a FFANN with small-world topology. Therefore, we considered 2 real-life problems: estimating the thermal performance of solar air collectors and predicting the modulus of rupture values of oriented strand boards. We used the FFANN with small-world topology to solve both problems and compared the results with those of a conventional FFANN with zero rewiring. In addition, we investigated whether there was statistically significant difference between the regular FFANN and small-world FFANN model. Our results show that there exists an optimal rewiring number within the small-world topology that warrants the best performance for both problems.
Keywords
Small-world network, feed-forward artificial neural network, rewiring, network topology
First Page
708
Last Page
718
Recommended Citation
ERKAYMAZ, OKAN; ÖZER, MAHMUT; and YUMUŞAK, NEJAT
(2014)
"Impact of small-world topology on the performance of a feed-forward artificial neural network based on 2 different real-life problems,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 22:
No.
3, Article 15.
https://doi.org/10.3906/elk-1202-89
Available at:
https://journals.tubitak.gov.tr/elektrik/vol22/iss3/15
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons