Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1207-132
Abstract
Many articles that appeared in the literature agreed upon the feasibility of diagnosing obstructive sleep apnea (OSA) with a single-lead electrocardiogram. Although high accuracies have been achieved in detection of apneic episodes and classification into apnea/hypopnea, there has not been a consensus on the best method of selecting the feature parameters. This study presents a classification scheme for OSA using common features belonging to the time domain, frequency domain, and nonlinear calculations of heart rate variability analysis, and then proposes a method of feature selection based on correlation matrices (CMs). The results show that the CMs can be utilized in minimizing the feature sets used for any type of diagnosis.
Keywords
Heart rate variability, sleep apnea, feature selection, correlation matrices, diagnosing, classification
First Page
465
Last Page
478
Recommended Citation
GÜRÜLER, HÜSEYİN; ŞAHİN, MESUT; and FERİKOĞLU, ABDULLAH
(2014)
"Feature selection on single-lead ECG for obstructive sleep apnea diagnosis,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 22:
No.
2, Article 18.
https://doi.org/10.3906/elk-1207-132
Available at:
https://journals.tubitak.gov.tr/elektrik/vol22/iss2/18
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons