Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1010-869
Abstract
In this paper, we describe an essential problem in data clustering and present some solutions for it. We investigated using distance measures other than Euclidean type for improving the performance of clustering. We also developed an improved point symmetry-based distance measure and proved its efficiency. We developed a k-means algorithm with a novel distance measure that improves the performance of the classical k-means algorithm. The proposed algorithm does not have the worst-case bound on running time that exists in many similar algorithms in the literature. Experimental results shown in this paper demonstrate the effectiveness of the proposed algorithm. We compared the proposed algorithm with the classical k-means algorithm. We presented the proposed algorithm and their performance results in detail along with avenues of future research.
Keywords
Data clustering, distance measure, point symmetry, kd-tree, k-means
First Page
1665
Last Page
1684
Recommended Citation
ABUDALFA, SHADI and MIKKI, MOHAMMAD
(2013)
"K-means algorithm with a novel distance measure,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 21:
No.
6, Article 12.
https://doi.org/10.3906/elk-1010-869
Available at:
https://journals.tubitak.gov.tr/elektrik/vol21/iss6/12
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons