Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-1102-1033
Abstract
Drug design datasets are usually known as hard-modeled, having a large number of features and a small number of samples. Regression types of problems are common in the drug design area. Committee machines (ensembles) have become popular in machine learning because of their good performance. In this study, the dynamics of ensembles used in regression-related drug design problems are investigated with a drug design dataset collection. The study tries to determine the most successful ensemble algorithm, the base algorithm--ensemble pair having the best/worst results, the best successful single algorithm, and the similarities of algorithms according to their performances. We also discuss whether ensembles always generate better results than single algorithms.
Keywords
Drug design datasets, ensemble algorithms, regression, regression ensembles
First Page
586
Last Page
602
Recommended Citation
AMASYALI, MEHMET FATİH and ERSOY, KADRİ OKAN
(2013)
"A comparative review of regression ensembles on drug design datasets,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 21:
No.
2, Article 19.
https://doi.org/10.3906/elk-1102-1033
Available at:
https://journals.tubitak.gov.tr/elektrik/vol21/iss2/19
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons