Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.3906/elk-0907-132
Abstract
The analytical modeling of nanoscale Double-Gate MOSFETs (DG) requires generally several necessary simplifying assumptions to lead to compact expressions of current-voltage characteristics for nanoscale CMOS circuits design. Further, progress in the development, design and optimization of nanoscale devices necessarily require new theory and modeling tools in order to improve the accuracy and the computational time of circuits' simulators. In this paper, we propose a new particle swarm strategy to study the nanoscale CMOS circuits. The latter is based on the 2-D numerical Non-Equilibrium Green's Function (NEGF) simulation and a new extended long channel DG MOSFET compact model. Good agreement between our results and numerical simulations has been found. The developed model can also be incorporated into the nano-CMOS circuits' simulators to study CMOS-based devices without impact on the computational time and data storage.
Keywords
Particle Swarm, DG MOSFET, Optimization, nanoscale, compact model
First Page
1131
Last Page
1141
Recommended Citation
DJEFFAL, FAYACL; BENDIB, TOUFIK; BENZID, REDHA; and BENHAYA, ABDELHAMID
(2010)
"An approach based on particle swarm computation to study the nanoscale DG MOSFET-based circuits,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 18:
No.
6, Article 15.
https://doi.org/10.3906/elk-0907-132
Available at:
https://journals.tubitak.gov.tr/elektrik/vol18/iss6/15
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons