•  
  •  
 

Turkish Journal of Electrical Engineering and Computer Sciences

DOI

-

Abstract

Differential Evolution (DE) algorithm is a new heuristic approach mainly having three advantages; finding the true global minimum regardless of the initial parameter values, fast convergence, and using few control parameters. DE algorithm is a population based algorithm like genetic algorithms using similar operators; crossover, mutation and selection. In this work, we have compared the performance of DE algorithm to that of some other well known versions of genetic algorithms: PGA, Grefensstette, Eshelman. In simulation studies, De Jong's test functions have been used. From the simulation results, it was observed that the convergence speed of DE is significantly better than genetic algorithms. Therefore, DE algorithm seems to be a promising approach for engineering optimization problems.

Keywords

Optimization, Genetic Algorithm, Differential Evolution, Test Functions.

First Page

53

Last Page

60

Share

COinS