•  
  •  
 

Turkish Journal of Biology

Abstract

Background/aim: The overexpression of HER2 is correlated with poorer outcomes and therapeutic resistance in breast cancer patients. While HER2-targeted therapies have shown improvement, prognosis remains poor for HER2-positive breast cancer patients, and these treatments have limitations. Therefore, it is crucial to explore effective molecular strategies for early detection and treatment of HER2-positive breast cancers. Materials and methods: In this study, we employed the cell-SELEX method to generate a selective aptamer capable of recognizing HER2 in its native conformation within breast cancer cells, for theranostic applications. Utilizing an adherent cell-SELEX approach, we developed and explored a DNA aptamer, named HMAP7, which can specifically target HER2 in the MDA-MB-453 and SK-BR-3 human breast cancer cell lines. After sequencing, the binding affinities of 10 candidate aptamers to HER2 receptors were evaluated by measuring fluorescence intensities within intact cells using near-infrared optical imaging. The dissociation constant of HMAP7 was determined to be in the nanomolar range in both cell lines. Results: The cell-SELEX-derived aptamer sequence, HMAP7 (41-mer), exhibited the highest binding affinity and specificity for HER2. HMAP7 was rapidly internalized into breast cancer cells overexpressing HER2 but showed no uptake in the HER2 receptor-deficient breast cancer cell line MDA-MB-231. Moreover, HMAP7 demonstrated remarkable selectivity for HER2, rendering it suitable for use in complex biological systems. Conclusions: Our findings suggest that the novel DNA aptamer HMAP7 holds promise for both therapeutic and diagnostic applications, enabling selective delivery of therapeutic agents or imaging of HER2-positive breast tumors.

DOI

10.55730/1300-0152.2680

Keywords

HER2, breast cancer, cell-SELEX, aptamer, targeted therapy, optical imaging

First Page

35

Last Page

45

Included in

Biology Commons

Share

COinS