•  
  •  
 

Turkish Journal of Biology

DOI

10.3906/biy-1912-18

Abstract

Pathogenesis-related proteins (PR-proteins) are induced in response to environmental stresses such as osmotic and drought stress, wounding, microbial infections and treatment with specific plant hormones and elicitors. These proteins are classified into several groups (PR-1 through PR-17) based on their amino acid sequence and biochemical functions. The present study focuses on prediction, isolation, over-expression and analysis of the antifungal activities of the thaumatin-like proteins (i.e. PR-5) in the model legume M. truncatula var. truncatula. Analysis of M. truncatula genome sequence, available freely on the NCBI website, indicated the presence of at least 15 PR-5 Open Reading Frames (ORFs), 5 of them (dubbed TLP-1, -2, -3, -4 and -5) were selected for this study. Using gene-specific primers, the genomic coding sequences were isolated, sequenced and all confirmed to match with those reported in the database. All the fragments were, then, cloned in Escherichia coli isolate BL21 (DE3), using pET-21c(+) plasmids for subsequent overexpression (overexpression). All 5 genes were expressed as inclusion bodies (IBs) with masses, estimated by SDS PAGE, corresponding to the theoretical values. As expected, none of the protein IBs had no detectable effect on the phytopathogenic fungi Rhizoctonia solani, Alternaria alternata, Fusarium graminearum, Fusarium solani, Verticillium sp. and Phytophtora spp. However, when the in vitro refolded IB preparations were applied, all displayed comparable strong antifungal activities against the tested fungi. The current study is the first report of overexpression and evaluation of antifungal activities of PR-5 family of proteins from M. truncatula Var. truncatula, and provides experimental evidence that all investigated proteins have the potential for enhancing resistance against some important fungal pathogens.

Keywords

Antifungal activity, Medicago truncatula, pathogenesis related proteins, protein expression, thaumatin like protein

First Page

176

Last Page

187

Included in

Biology Commons

Share

COinS