•  
  •  
 

Turkish Journal of Biology

DOI

10.3906/biy-1807-181

Abstract

Food packaging technology has been advancing to provide safe and high quality food products and to minimize food waste. Moreover, there is a dire need to replace plastic materials in order to reduce environmental pollution. The aim of this study was to prepare biodegradable antimicrobial packaging films from gelatin. Boric acid, disodium octaborate tetrahydrate, and sodium pentaborate were incorporated as the antimicrobial agents. Films containing boric acid and its salts showed antibacterial effect against Staphylococcus aureus and Pseudomonas aeruginosa, as well as antifungal and anticandidal effects against Aspergillus niger and Candida albicans. The mechanical strength of the films was mostly enhanced by the addition of boron derivatives. The rheological measurements and Fourier-transform infrared spectroscopy results suggest that boron derivatives did not interfere with the network formation during gelling. The morphology of boron-added antimicrobial films was found to be similar to the morphology of the control. In conclusion, the newly developed gelatin films containing 10% or 15% disodium octaborate (g/g gelatin) might be good candidates for biodegradable antimicrobial packaging materials.

Keywords

Gelatin films, antimicrobial packaging, boron, antifungal, boric acid, disodium octaborate tetrahydrate, sodium pentaborate

First Page

47

Last Page

57

Included in

Biology Commons

Share

COinS