Turkish Journal of Biology




Sperm preparation procedures are a potential generator of oxidative stress-induced DNA damage, which leads to a dramatic drop in fertility. An increasing number of studies suggest that melatonin reduces the oxidative stress induced by manipulation. However, very little is known about the preservative role of melatonin in sperm preparation medium during assisted reproduction procedures. For this aim to be achieved, semen was divided into two fractions and preincubated with and without 1 mM melatonin. Afterwards, both fractions were divided into two subfractions to perform swim-up in the presence and absence of 1 mM melatonin. Labeling with anti-CD46 and antiactive caspase-3 allowed the monitoring of acrosome reaction and apoptosis by flow cytometry. Sperm DNA fragmentation and compaction were analyzed through propidium iodide staining. The normozoospermic and oligozoospermic samples that were preincubated with melatonin underwent a significant increase in the ratio of adequate spermatozoa and a reduction of caspase-3 activation. Additionally, preincubation with melatonin enhanced the migration of sperm cells with compacted DNA in oligozoospermic samples (P < 0.05) and prevented DNA fragmentation in normozoospermic samples (P < 0.05). In light of the current results, the cytoprotective capacity and innocuousness of melatonin make it a great candidate to be applied in assisted reproduction techniques in order to prevent iatrogenic oxidative damage.


Melatonin, antioxidants, sperm cells, in vitro fertilization, oxidative damage, assisted reproduction technology, sperm manipulation

First Page


Last Page


Included in

Biology Commons