Turkish Journal of Biology




During the process of industrial production of biofuels and biochemicals from lignocellulosic biomass, large amounts of waste byproducts rich in xylose are generated, resulting in excessive wastage of natural resources and environmental pollution. In this work, xylose solution from corncob hydrolysate was utilized to produce 2,3-butanediol (2,3-BD), using the strain Enterobacter cloacae CICC 10011 to improve the utilization rate of hemicellulose and reduce environmental pollution. 2,3-BD fermentation conditions were subsequently developed. Xylose solution and (NH4)2HPO4, selected with the Plackett-Burman experiment, were determined as significant independent variables to conduct a response surface experiment. With the optimized medium, 50.02 g/L 2,3-BD production was obtained, which corresponded to 85.16% of the theoretical value. Furthermore, 81.4 g/L 2,3-BD production, 92.95 g/L the total production (2,3-BD + acetoin), and 0.72 g/(L h) productivity were obtained by fed-batch fermentation. Therefore, efficient production of 2,3-BD from corncob-derived xylose is important in the future development and expansion of biorefining technologies.


Fermentation, cellulose, 2, 3-butanediol, bioreactors, Enterobacter cloacae, microbial growth

First Page


Last Page


Included in

Biology Commons