•  
  •  
 

Turkish Journal of Biology

DOI

-

Abstract

A total of 21 bacterial isolates (Azotobacter sp., 10 and fluorescent Pseudomonas sp., 11) were isolated from different rhizospheric soils in the vicinity of Aligarh city and characterized as per standard methods. These isolates were further tested for the production of indole acetic acid (IAA) in a medium with 0, 1, 2 and 5 mg/ml of tryptophan. A low amount (2.68-10.80 mg/ml) of IAA production was recorded by Azotobacter strains without tryptophan addition. Seven Azotobacter isolates showed high level (7.3 to 32.8 mg/ml) production of IAA at 5 mg/ml of tryptophan while at 1 and 2 mg/ml the production was in the range of 1.47 to 11.88 and 5.99 to 24.8 mg/ml, respectively. Production of IAA in fluorescent Pseudomonas isolates increased with an increase in tryptophan concentration from 1 to 5 mg/ml in the majority of isolates. In the presence of 5mg/ ml of tryptophan, 5 isolates of Pseudomonas produced high levels (41.0 to 53.2 mg/ml) of IAA while 6 other isolates produced IAA in the range of 23.4 to 36.2 mg/ml. Production of IAA was further confirmed by extraction of crude IAA from 3 isolates of Azotobacter (Azs_1, Azs_6 and Azs_9 ) and three isolates of Pseudomonas (Ps_1, Ps_4 and Ps_7) and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same Rf value. Pseudomonas isolates (Ps_1, Ps_4 and Ps_7) showed inhibitory effects on the growth of root elongation of Sesbania aculeata and Vigna radiata at all concentrations of tryptophan compared to the control. However, the isolates of Azotobacter (Azs_1, Azs_6 and Azs_9) demonstrated stimulatory effects on both plants. Increasing the concentration of tryptophan from 1 mg/ml to 5 mg/ml resulted in decreased growth in both S. aculeata and V. radiata. On a comparative basis isolate Azs_9 was most promising in promoting plant growth. On the other hand, high concentration of exogenous tryptophan could exhibit toxic effects on plant growth.

Keywords

Indole acetic acid, Tryptophan, Azotobacter, Pseudomonas

First Page

29

Last Page

34

Included in

Biology Commons

Share

COinS