Turkish Journal of Electrical Engineering and Computer Sciences
DOI
10.55730/1300-0632.4005
Abstract
Federated learning (FL) is a communication-efficient and privacy-preserving learning technique for collaborative training of machine learning models on vast amounts of data produced and stored locally on the distributed users. This paper investigates unbiased FL methods that achieve a similar convergence as state-of-the-art methods in scenarios with various constraints like an error-prone channel or intermittent energy availability. For this purpose, we propose FL algorithms that jointly design unbiased user scheduling and gradient weighting according to each user's distinct energy and channel profile. In addition, we exploit a prevalent metric called the age of information (AoI), which quantifies the staleness of the gradient updates at the parameter server and adaptive momentum attenuation to increase the accuracy and accelerate the convergence for nonhomogeneous data distribution of participant users. The effect of AoI and momentum on fair FL with heterogeneous users on various datasets is studied, and the performance is demonstrated by experiments in several settings.
Keywords
Federated learning, energy harvesting, age of information, momentum, wireless communications
First Page
612
Last Page
625
Recommended Citation
ÇAKIR, ZEYNEP and ARSLAN, ELİF TUĞÇE CERAN
(2023)
"Unbiased federated learning in energy harvesting error-prone channels,"
Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 31:
No.
3, Article 9.
https://doi.org/10.55730/1300-0632.4005
Available at:
https://journals.tubitak.gov.tr/elektrik/vol31/iss3/9
Included in
Computer Engineering Commons, Computer Sciences Commons, Electrical and Computer Engineering Commons