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Abstract:The spherical Hartree–Fock approximation is applied to a no-core shell model with a realistic effective baryon–

baryon interaction. The ground state properties of a heavy spherical neutron-rich doubly magic 208Pb nucleus under

compression are investigated. It is found that the nucleus becomes more bound with the occurrence of ∆ resonances.

The creation of ∆ increases as the compression is continuous. There is a considerable reduction in the compressibility

when the ∆ degree of freedom is activated. It is found that the ∆ particle is the basic component of the 208Pb nucleus

besides nucleons at the ground state without any compression. When the nucleus is compressed to about 4.31 times

the ordinary density, the ∆ component is sharply increased to about 14.4% of all baryons in the system. It is found

that there is a radial density distribution for ∆ at the ground state of 208Pb nucleus without any compression. The

single particle energy levels are calculated and their behaviors are examined under compression too. A good agreement

was obtained between the results of the effective Hamiltonian and the phenomenological shell model for the low lying

single-particle spectra.

Key words: Nuclear structure, compressed finite nuclei, ∆-resonance, Hartree–Fock method, shell model, heavy

spherical doubly magic 208Pb nucleus
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1. Introduction

Doubly magic nuclei have been the cornerstone of nuclear structure since the inception of the nuclear shell

model [1]. The properties of the spherical doubly magic 208Pb nucleus are the focus of nuclear structure studies

[2].

The structure of nuclei at intermediate and high energies is importantly understood by the excitation of

∆ isobars. Various probes are formed to provide an exciting challenge both theoretically and experimentally,

especially in the search for constructive and coherent pion production [3,4]. Current interest in understanding

the collision of both light and heavy ions [5–10] involves ∆ excitation and its decay to nucleon and to pions.

The heavy ion collision problem [11] and astrophysical phenomena such as supernova explosions or structure

of neutron stars [12] are understood by investigating the delta formation in the nucleus, as a function of

compression. The ground state properties of the spherical heaviest doubly magic 208Pb nucleus and the

formation of the ∆ isobars at equilibrium under large radial compression are studied by the present work.

The effect of ∆ resonance on the ground state properties of closed shell nuclei is emphasized. By using a

spherical mean field method, the calculations are performed. In other words, the constrained spherical Hartree–
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Fock (CSHF) approximations with a model space of the 8 space (9 major oscillator shells) and realistic effective

Hamiltonian [13] with N–N, (N–∆), and (∆–∆) interactions are used. By using the Brueckner G-matrix

[14–19] and its adopted improvement [20–22], the effective baryon–baryon interaction is evaluated.

The results of the role of ∆’s in finite nuclei have been investigated in a 6-model space (7 shells) [23–

35]. A collection of nucleons and ∆-resonances is considered to form the nucleus. The effects of including

the ∆-degrees of freedom on the Hartree–Fock energy, density distribution, and ∆-orbital occupations in the

ground state and under large amplitude static compression at temperature T = 0 have also been examined.

The selected nuclei were 16O, 40Ca, 56Ni, 90Zr, 100Sn, and 132Sn.

In the present work, the main goal extends these results to a new region of the periodic table. The previous

effects with different adjusting parameters are considered in a large model space for the heavy doubly magic
208Pb nucleus. The emphasis is on single particle energy levels for nucleons and deltas with large amplitude

static compression in a model space consisting of 9 major oscillator shells with CSHF approximation. The

calculation was done with the use of a realistic effective Hamiltonian with different potentials. The Brueckner

G-matrices that are used are generated from coupled channels NN, N∆, and πNN. This is done to give a

good description of NN data up to 1 GeV. By using the same method reported before [36,37], the effective

interactions of the nuclear shell model are calculated. It is a good tool to study highly compressed nuclei at

densities accessible to relativistic heavy ion collisions.

The mean-field calculations demonstrated the effective Hamiltonian, Heff , and the calculation proce-

dures. Based on the study presented in the literature [38–40], the 2-body matrix elements are scaled in the

N–N sector to an optimal value of ℏω′ , the oscillator energy for 208Pb nucleus in the 9 major oscillator shells

with the 10 delta orbits. By using adjusting parameters (λ1 , λ2 , and ℏω′), it is possible to obtain such a fit to

the equilibrium binding energy and rrms radius. In this work, the adjusting parameters (λ1 ,λ2 , and ℏω′) are

shown in the Table. This paper is organized as follows: section 2 contains the results and discussion and the

conclusion is presented in section 3.

Table. Adjusting parameters of effective Hamiltonian for 208Pb for the model space of 9 oscillator shells for which the

calculations were performed. The binding energy (point mass rrms) that was fitted was –1636.5 MeV (5.503 fm) for

208Pb 44].

Nucleus 208Pb λ1 λ2 ℏω′(MeV)
(9 shell) 0.997 1.001 7.345

2. Results and discussion

The total number of ∆’s is zero in the ground state at equilibrium (zero constraint) in the case of the equal

doubly magic 16O, 40Ca, 56Ni, 90Zr, and 100Sn nuclei. Moreover, the number of ∆’s is not zero in the ground

state for the neutron-rich doubly magic 132Sn nucleus. These results give us strong motivation to study the

heavy neutron-rich doubly magic 208Pb nucleus in a larger model space consisting of 9 major oscillator shells

for nucleons and 10 orbits for ∆’s, making a total of 47 baryons orbits.

Figure 1 displays the Hartree–Fock energies EHF versus rrms using RSC potential for 208Pb. In this

figure, there is virtually no difference in the results with and without ∆’s at equilibrium. It is seen that without

the ∆-degree of freedom in the system, EHF increases steeply towards zero binding energy under compression.

When the transition to ∆ is allowed (dashed curve), the nucleus remains bound as density is increased to 4.31
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of normal density. This shows about 1005.6 MeV and 627.3 MeV of excitation energy to achieve a 49% volume

reduction in the nucleon-only results, and nucleons and ∆’s results, respectively.

It appears from the above results that 627.3 MeV of excitation energy is enough to reduce the volume by

49% and the energy by 38% more. This suggests that the less dense outer part of the nucleus initially responds

to the external load more readily than the inner part. The results show that there is a significant reduction in

the static compression modulus for RSC static compressions, which is reduced by including the ∆ excitations.

The consequence of this reduction is the softening of the nuclear equation of state at larger compression. To see

the role of ∆ in determining the equation of state, Figure 1 shows the dependence of EHF on the compression

characterized by rrms . It can be seen that near equilibrium (rrms = 5.50 fm) all curves agree. Furthermore,

the inclusion of ∆ orbits tends to decrease EHF for compressed nuclei. The role of the ∆’s is less significant

as rrms approaches the ground state value.

Figure 1 shows that as the static load force increases the compression of the nucleus with nucleons only

is less than that of the other nucleus with nucleons and ∆’s.

In terms of relativistic heavy-ion collision, Figure 1 implies that the heavy nucleus can more easily

penetrate when the ∆ degree of freedom becomes explicit.

Figure 2 shows that the number of ∆’s increases rapidly as volume decreases. It is interesting to note

in Figure 2 that the numbers of ∆0 ’s and ∆+ ’s are the same until rrms = 3.90 fm. Beyond this radius, the

increment in the number of ∆0 ’s is larger than the number of ∆+ ’s as the compression is continuous. This is

due to the fact that the number of neutrons is greater than the number of protons in the 208Pb nucleus.
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Figure 1. CSHF energy as a function of the point mass

rrms for 208Pb evaluated in 9 major oscillator shells with

10 ∆-orbitals. The dashed curve corresponds to CSHF

calculations including the ∆’s, while the solid curve cor-

responds to CSHF with nucleons only.

Figure 2. Number of ∆’s as a function of rrms for 208Pb

in 9 major shells model space. The upper curve is for the

total number of ∆’s. The dotted curve is for the number

of ∆+ and the dashed curve is for ∆0 .

Although there is a rapid rise in the ∆-population as compression increases, the change in the total

number of ∆’s is 0.144. It is interesting to note that there is a consistency of the amount of N–∆ mixing

with the amount of excitation energy exhibited with compression. That is, when 0.144 ∆’s are presented,

the excitation energy is in the order of 0.144(M-m) ≈ 42.77 MeV. Thus, on the scale of the unperturbed

single-particle energies, a substantial fraction of the compressive energy is delivered through the N∆ and ∆–∆

interactions to create more massive baryons in the lowest energy configuration of the nucleus. In other words,
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the number of ∆’s can be increased to about 30 at rrms = 3.38 fm, which corresponds to about 4.31 times the

normal density.

Figure 2 shows that the number of created ∆’s increases sharply when the 208Pb nucleus is compressed to

a volume of about 0.77 of its equilibrium size. However, at this nuclear density, which is 4.31 times the normal

density, the percentage of nucleons converted to ∆ is only about 14.4% in 208Pb. This result is consistent

with the information extracted from the data of relativistic heavy-ions collisions. In some heavy-ion collision

experiments, the ∆’s may constitute up to 10% of the nuclear constituents when the system is compressed

[41,42].

The calculations of Figure 2 show that the number of ∆’s is not zero at equilibrium (zero constraint) in

the 208Pb nucleus. This result is consistent with the previous finding for 132Sn.

Therefore, the heavy nuclei are a composite of the ∆’s besides the nucleons at equilibrium ground state

without any compression.

Because of the limitations of the model space, our calculations for higher densities are more speculative.

Nevertheless, they can give us some idea about how the ∆ population can be increased as the nucleus is

compressed to higher densities accessible to relativistic heavy-ion collisions.

The radial density distribution for 208Pb at equilibrium state without any compression is displayed in

Figure 3.
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Figure 3. TotalρT , protonρp (dashed line), neutron ρn (dotted line), and delta ρ∆ (solid line) radial density distribution

for 208Pb at equilibrium state without any compression in a model space of 9 major oscillator shells.

It can be seen from this figure that there is a radial density distribution for ∆ at the ground state of the
208Pb nucleus without any compression. This emphasizes the important fact that the ∆ particle is the basic

component of heavy nuclei besides nucleons (protons and neutrons) at ground state without any constraints.

Our results shown in this figure are consistent with the results of figure 2 in Zuo et al. [43] that shows many

methods to find the radial density of 208Pb.

Figure 4 shows the radial density distribution under compression. The neutron radial density is higher

than the proton density at all values of r. This is due to Coulomb repulsion between the protons. The ∆-radial

density distribution, under high compression (point mass rrms= 5.05 fm), reaches a peak value of about 0.02

of the proton (or neutron) radial density at r = 3.1 fm. ∆-mixing with the nucleons in the 0p 3/2 , 0p 1/2 ,
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0d 5/2 , 0d 3/2 , 0f 7/2 , 0f 5/2 , 1p 3/2 , 1p 1/2 , 0g 9/2 , and 0g 7/2 orbitals occurs and this explains the shape of the

∆-radial distribution presented in Figure 4.

Figure 5 displays the radial density distributions of 208Pb, which is evaluated of about 0.23 reduced

volumes. In this case, the ∆-radial density distribution reaches a peak value of about 0.95 of the proton radial

density.
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Figure 4. TotalρT , protonρp (dashed line), neutron

ρn (dotted line), and delta ρ∆ (solid line) radial density

distribution for 208Pb at point mass rrms= 5.047 fm in a

model space of 9 major oscillator shells.

Figure 5. TotalρT , protonρp (dashed line), neutron

ρn (dotted line), and delta ρ∆ (solid line) radial density

distribution for 208Pb at point mass rrms= 3.381 fm in a

model space of 9 major oscillator shells.

It can be seen from Figures 4 and 5 that as compression increases the total radial density increases and

the radial density distribution of ∆’s increases sharply, but the radial density of nucleons decreases sharply.

Figure 6 shows the total radial density for 208Pb in 9 oscillator shells at large compression (rrms = 3.38

fm) and at equilibrium (point mass radius rrms = 5.50 fm). This figure shows that when the volume of the

nucleus is decreased by 0.77 of the equilibrium volume the radial density is increased by 1.65 of its value at the

equilibrium case.

Clearly, the density in the interior rises relative to the interior density at equilibrium as the nucleus is

compressed. This is in contrast to the behavior of the radial density on the outer surface, where the radial

density distribution is higher at equilibrium than the radial density when the static load is applied.

In Figure 7, the lowest neutron single particle energy levels as a function of rrms are displayed. The

orbits curved up as the load on the nucleus increased. This is because the kinetic energy of the baryons, which

is a positive quantity, becomes more influential than the attractive mean field of the baryons.

The single particle energies increase linearly after rrms = 4.0 fm; they intersect at higher compression

especially for higher orbitals, and consequently the nucleus becomes unbound.

The behavior of single particle energy levels has good agreement with the orbital ordering of the standard

shell model. The gap is very clear between the shells. The splitting of the levels in each shell is an indication

that L–S coupling is strong enough in RSC potential, i.e. L–S coupling becomes stronger as the static load on

the nucleus increases. When the nucleus is compressed, the splitting of the orbitals becomes clearer, especially

in delta orbitals.
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equilibrium (rrms= 5.503 fm) (dashed line) and at rrms
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Figure 7. Single particle energy of lowest 10 neutron

states for 208Pb in 9 oscillator shells as a function of rrms .

Further efforts will concentrate on extending this study to a large model space for heavier nuclei and

alternative potentials in order to investigate the sensitivity of nuclear properties to the N–∆ and ∆–∆

interactions. One ultimate goal is to predict the behavior of nuclear systems at finite temperature with the

inclusion of the ∆-degree of freedom.

3. Conclusion

The ground state properties of the heavy neutron-rich spherical 208Pb nucleus have been investigated by using

a realistic effective baryon–baryon Hamiltonian in the constrained Hartree–Fock approximation. It is found

that the nucleus becomes more bound with the occurrence of ∆-resonances. The nuclear shell model is derived
in this approach with single particle levels occupied by baryons that are a mixture of nucleons and deltas. As

shown in 208Pb, the results compare favorably with those of the phenomenological successful shell model.

It is found that the ∆ particle is the basis component of the heavy nuclei besides nucleons at ground state

without any compression. There is a considerable reduction in compressibility when the ∆ degree of freedom

is active. The creation of ∆’s increases as the compression continues.

Finally, a large fraction of the excitation energy is required to compress the nucleus used to create mass

in the form of ∆’s.
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