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Abstract: In this work, we investigate the effects of noncommutative spaces on the Hořava–Lifshitz black hole. We

construct the black hole solutions in the noncommutative space of (z = 3)-Hořava–Lifshitz gravity. We calculate the

horizon and the thermodynamic properties such as the Hawking temperature, the ADM-Mass, and entropy, which reduce

to their commutative limits when the noncommutativity parameter tends to zero.
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1. Introduction

Recently Hořava proposed a renormalizable theory of gravity at a Lifshitz point [1], which may be regarded as
a UV complete candidate for general relativity. However, it is reduced to Einstein’s general relativity at large
distances [2]. Noting that Hořava–Lifshitz theory goes to standard general relativity if the coupling λ has the
specific value λ = 1.

However, the static solutions with the spherical symmetry black hole in Hořava–Lifshitz theory were
studied by Lu et al. [2], while the topological black hole solutions and their thermodynamic properties were

discussed in detail by Cai et al. [3].

In the ADM formalism, the 4-dimensional metric of general relativity is parameterized as follows [4]:

ds2 = −N2dt2 + gij

(
dxi − N idt

) (
dxi − N jdt

)
. (5)

The z = 3-Hořava–Lifshitz action with a parameter λ proposed by Hořava is given by [1]:

SHL =
∫

(L0 + L1) (6)

with

L0 =
√

gN

{
2
k2

(
KijK

ij − λK2
)

+
k2μ2

(
ΛWR − 3Λ2

W

)
8 (1 − 3λ)

}
(7)
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L1 =
√

gN

{
k2μ2 (1 − 4λ)
32 (1 − 3λ)

R2 +
k2

2w4

(
Cij −

μw2

2
Rij

) (
Cij − μw2

2
Rij

)}
(8)

where λ, k, μ, w , and W are constant parameters, and Cij is the Cotton tensor, defined by

Cij = εikl∇k

(
Rj

l −
1
4
Rδj

l

)
. (9)

In order to understand Lifshitz black holes we will consider the 2 conditions N2 = N̂2f(r) and N i = 0. A

spherically symmetric solution could be obtained with a metric ansatz proposed by Lu–Mei–Pope (LMP) [2]

ds2
LMP = −N̂2(r)f(r)dt2 +

dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (10)

which implies that

Kij = Cij = 0 (11)

If we take only the Lagrangian L0 we obtain the Schwarzschild-AdS (SAdS) [5] black hole whose metric function
is given by

f (r) = 1 − ΛW

2
r2 − m

r
and N̂2 = 1. (12)

The relevance of noncommutative geometry was developed when it was shown that field theories become
noncommutative if the matter is coupled to gravity, and the spacetime induces algebra of noncommutative
coordinates. The noncommutativity is introduced by means of [6]

[x̂i, x̂j] = iθij , (1)

where θij is an antisymmetric tensor, D × D matrix, where D is the dimension of the spacetime. It has
dimensions of (length) 2 and it parameterizes the spacetime. The noncommutative relation given by (1) induces
quantum mechanical fluctuations in the metric gμν . The spacetime is quantized and the coordinates become
noncommutative.

In an approach to noncommutative geometry, the multiplication of 2 fields in the Lagrangian is replaced
by the star (or Moyal) product given in [7] by

(f ∗ g)(x̂) = exp
[

i

2
θab ∂

∂x̂a

∂

∂x̂b

]
f(x̂)g(x̂), (2)

where f and g are functions of the spaces coordinates. It was noted by Chaichian et al. [8] that at the replacement

x̂i = xi +
1
2
θijpj , p̂j = pj (3)

we get to the standard commutation relationships

[x̂i, x̂j] = iθij , [x̂i, pj] = iδij , [pi, pj ] = 0 (4)

where xi is the related commutative coordinates [xi, xj] = 0.
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In our paper, we investigate the effects of noncommutative spaces on the Hořava–Lifshitz black hole.
We construct the black hole solutions in the noncommutative space of (z = 3)-Hořava–Lifshitz gravity. We
calculate the horizon and the thermodynamic properties such as the Hawking temperature, the ADM-Mass,
and entropy, which reduce to their commutative limits when the noncommutativity parameter tends to zero.

The remainder of this work is organized as follows. In section 2, we construct the solution of the noncom-
mutative Hořava–Lifshitz black hole, starting with the simple case of Schwarzhild–AdS and then generalizing to
LMP models. Section 3 is devoted to finding the thermodynamics properties of black holes, namely the entropy
and Hawking temperature, and section 4 contains the concluding remarks.

2. Hořava–Lifshitz black hole in noncommutative space

2.1. Schwarzhild–AdS formulation

To understand this construction, we will start with the Schwarzhild–AdS case, which corresponds to the
Lagrangian L0 ; thus we have the following solution of a black hole:

ds2 =
(

1 − ΛW

2
r̂r̂ − m√

r̂r̂

)
dt2 +

dr̂2(
1 − ΛW

2
r̂r̂ − m√

r̂r̂

) + r̂r̂
(
dθ2 + sin2 θdϕ2

)
(13)

The horizon of this black hole is localized at

(
1 − ΛW

2
r̂r̂ − m√

r̂r̂

)
= 0 (14)

By insertion of formula (3) and developing we find the following fourth-degree equation

r4 +
Λw

(
p2θ2 −

(
�p.�θ
)2
)
− 3Λw

�L.�θ − 16

8Λw
r2 +

2m

Λw
r+

16�L.�θ + 2Λw

(
�L.�θ
)2

− Λw
�L.�θ

(
p2θ2 −

(
�p.�θ
)2
)

64Λw
= 0 (15)

Here θij = 1
2
εijkθk and L = r × p , Eq. (15) is equivalent to

r4 + Ar2 + Br + C = 0 (16)

where the coefficients are given by

A =
Λw

(
p2θ2 −

(
�p.�θ
)2
)
− 3Λw

�L.�θ − 16

8Λw
, B =

2m

Λw
,

C =
16�L.�θ + 2Λw

(
�L.�θ
)2

− Λw
�L.�θ

(
p2θ2 −

(
�p.�θ
)2
)

64Λw
(17)

Applying the Descarte method [9] in Eq. (16), we find the following solutions:

r1 =
−a −

√
−
(
a2 + 2A + 2B

a

)
2

, r2 =
−a +

√
−
(
a2 + 2A + 2B

a

)
2
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r3 =
a −

√
−
(
a2 + 2A − 2B

a

)
2

, r4 =
a +
√

−
(
a2 + 2A − 2B

a

)
2

(18)

with

a = ±

⎡
⎣(−q

2
− 1

2

√
27q2 + 4p3

27

)1/3

+

(
−q

2
+

1
2

√
27q2 + 4p3

27
− 2A

3

)1/3
⎤
⎦

1/2

b =
1
2

(
a2 + A +

B

a

)
, c =

1
2

(
a2 + A − B

a

)

p = −4C − A2

3
, q =

27A

3
(
A2 + 36C

)
+ C

(19)

Here the horizon corresponds to a positive choice of solutions

rH =
a +

√
−
(
a2 + 2A − 2B

a

)
2

. (20)

2.2. LMP formulation: general case

To get to the general case, we use the LMP formulation of Hořava–Lifshitz black hole in noncommutative space,

which is obtained by introducing a newly radial coordinate x =
√−ΛW r . As a consequence, we have LMP

black hole solutions where f and N̂ are determined to be

f = 1 + x2 −
(√−ΛW mx

)p±(λ)
,

N̂ = xq±(λ),
(21)

where

p± (λ) =
2λ ±

√
6λ − 2

λ − 1
, q ± (λ) = −1 + 3λ ± 2

√
6λ − 2

λ − 1
(22)

In order to understand this situation, we will deal with 2 different cases, namely λ = 3 and λ = 1. For λ = 3 :
we have

f = 1 + x2 −
√

−ΛW mx (23)

and
N̂2f = x−2

(
1 + x2 −√−ΛW mx

)
= x−2 + 1 −√−ΛWmx−1 (24)

In the noncommutative case, we have N̂2f = 0; therefore,

x̂−2 + 1 −
√
−ΛW mx̂−1 = 0 (25)

Expanding this equation we find the following equation:

x4 −
√
−ΛW m

4 x3 +
3
�

p2θ2−(�p. �θ)2
�
−6(�L.�θ)+16

32 x2 +
√
−ΛW m

�
4(�L.�θ)−3

�
p2θ2−(�p. �θ)2

��
16 x +

�
p2θ2−(�p. �θ)2

�
−4(�L.�θ)

32 = 0

(26)
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We set

A′ = −
√
−ΛW m

2 , B′ =
3
�

p2θ2−(�p. �θ)2
�

16 − 3(�L.�θ)
8 + 1

C ′ =
√
−ΛW m

[
(�L.�θ)

2 − 3
�
p2θ2−(�p. �θ)2

�
8

]
, D′ =

�
p2θ2−(�p. �θ)2

�
16 − (�L.�θ)

4

(27)

Therefore, Eq. (26) becomes

2x4 + A′x3 + B′x2 + C ′x + D′ = 0. (28)

To solve this equation we make the following change in variable

x = X − A′

8
(29)

Thus, Eq. (28) becomes

x4 + Ux2 + V x + S = 0 (30)

where

U =
−3A′

32
+

B

2
, V =

(
A′

2

)3

8
− A′B

8
+

C

2

S = −
(

A′

8

)4

+
B
(

A′

2

)2

8
− A′C

16
+

D

2

(31)

Using again the Descartes method [9] we find the following solutions:

r
′
1 =

−r −
√
−
(
r2 + 2U + 2V

t

)
2

, r
′
2 =

−t +
√
−
(
t2 + 2U + 2V

t

)
2

r
′
3 =

s −
√

−
(
t2 + 2U − 2V

t

)
2

, r
′
4 =

t +
√

−
(
t2 + 2U − 2V

t

)
2

(32)

Here the horizon corresponds also to a positive choice of solutions

r′H =
t +
√
−
(
t2 + 2U − 2V

t

)
2

(33)

If we take Q2 = 1
−ΛW

we find again the Reissner–Nordstrom black hole and when θ → 0 we meet the horizon

of a Reissner–Nordstrom black hole.
For λ = 1: the noncommutative version of metric function is given by

f = 1 + x2 −
√

−ΛW mx, N̂ = 1, (34)

which gives
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f = 1 +
(

xi −
1
2
θijpj

) (
xi −

1
2
θikpk

)
−
√
−ΛW m

(√(
xi −

1
2
θijpj

) (
xi −

1
2
θijpj

))

=
32x3 −√−ΛW mx2 +

(
4�L.�θ + 2p2θ2 − 2

(
�p. �θ
)2

+ 32
)

x

32x

+
√
−ΛW m

�
(�L.�θ)+p2θ2−(�L.�θ)2

�
32x

(35)

If we take f = 0, we have the following solution:

y =
3

√
−q

2
− 1

2

√
27q2 + 4p3

27
+

3

√
−q

2
+

1
2

√
27q2 + 4p3

27

r =
3

√
−q

2
− 1

2

√
27q2 + 4p3

27
+

3

√
−q

2
+

1
2

√
27q2 + 4p3

27
−
(√−Λwm

)
3

(36)

where

p =
(√

−Λwm
)2

− 1 +

(
8�L.�θ

)
− 2p2θ2 + 2

(
�p.�θ
)2

32

q =
1
3

(√
−Λwm

)
+

√−Λwm

32

[
−20

3
�L.�θ +

5
3
p2θ2 − 5

3

(
�p.�θ
)2
] (37)

3. Thermodynamic properties

3.1. Hawking temperature

We compute the Hawking temperature as follows [10]:

T =

(
N̂2f

)′
4π

√
−gttgrr

∣∣∣∣∣∣∣
x=x+

=

(
N̂2f

)′
4π

√
−gttgrr (38)

In the case of the AdS–Schwarszchild black hole

T =
√−ΛW

8π

3x2
+ + 2
x+

(39)

Here x+ is given from (20) by

x+ = r4+ =
a +

√
−
(
a2 + 2A − 2B

a

)
2

(40)

We find
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T =
√−ΛW

4π

3
4

(
a +

√
−
(
a2 + 2A − 2B

a

))2

+ 2

a +
√

−
(
a2 + 2A − 2B

a

) (41)

When we have λ = 3 we find

T =
x−1

[
(2 − 1) x2 − 1

]
4πr

=
x−1

[
x2 − 1

]
4πr

=
8M

16πx2
h − 4π(�L.�θ) + πp2θ2 − π(�p. �θ)2

(42)

which is the temperature of the Reisner–Nordstrom black hole in the commutative space θ = 0.

3.2. ADM-Mass

We derive the ADM-Mass as from Cai et al. [11]:

M =
πk2μ2 (−Λ)
2
√

6λ − 2

(
1 + x2

+

)
2

x
2p(λ)
+

(43)

In the case of λ = 3 we find

M =
πk2μ2 (−Λ)

8

(
1 + x2

+

)
2

x2
+

(44)

In noncommutative space we find

M =
πk2μ2 (−Λ)

8

(
1 + x2

+ − (�L.�θ)
4

+
p2θ2−(�p. �θ)2

16

)2

x2
+ − (�L.�θ)

4
+

p2θ2−(�p. �θ)2

16

(45)

3.3. Entropy

Now we calculate the entropy of this black hole. The first law of thermodynamics gives

dM = TdS. (46)

It means that

S =
√

2 (−Λ)√
3λ − 2

(
πr2

+ − π

Λ
ln

A

4
− S0

)
(47)

In noncommutative space we have the following expression for black hole entropy:

S =
√

2 (−Λ)√
3λ − 2

⎛
⎜⎜⎝πr2

+ − π

Λ
ln

A

4
− S0 −

π
(
�L.�θ
)

4
+

π

(
p2θ2 −

(
�p. �θ
)2
)

16

⎞
⎟⎟⎠ (48)

If λ = 3, we have the following expression:
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S =
√

2 (−Λ)√
7

(
π

A

4
− π

Λ
ln

A

4
− S0

)
, (49)

where

A = πr2
+ = π

⎛
⎝ t+

�
−
�

t2+2U− 2V
t

�
2

⎞
⎠

2

. (50)

4. Conclusion
We investigated the effects of noncommutative spaces on the Hořava–Lifshitz black hole. We constructed the
black hole solutions in the noncommutative space of (z = 3)-Hořava–Lifshitz gravity starting with the simple
case of Schwarzhild–AdS and generalizing to LMP models. We calculated the horizon and the thermodynamic
properties such as the Hawking temperature [Eq. (41)], the ADM-Mass [Eq. (45)], and entropy [Eq. (48)].

We have given detailed exact formulae of thermodynamic properties and the important point is that we
have recovered all results discussed in the commutative case when the noncommutativity parameter θ tends to
zero. We have in this case the following thermodynamic results for the Hořava–Lifshitz black hole:

Metric function: dsf (r) = 1 − ΛW

2 r2 − m
r ,

Hawking temperature: ds M
2πx2

h
,

ADM Mass: dsπk2μ2(−Λ)
8

(1+x2
+)2

x2
+

,

Entropy: ds
√

2(−Λ)√
3λ−2

(
πr2

+ − π
Λ ln A

4 − S0

)
.
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