Turk J Phys
30 (2006) , 67 — 79.
© TUBITAK

A Treatment of a Higher-Order Singular Lagrangian as
Fields System

N. I. FARAHAT, M. R. HELES
Department of Physics Islamic University of Gaza,
P.O. Box 108, Gaza, PALESTINE
e-mail: nfarahat@mail.iugaza. edu

Received 02.05.2005

Abstract

The higher-order singular Lagrangian system is treated as field system. Euler-Lagrange equations are
solved with some constraints. An example is studied and a comparison with Hamiltonian formulation is
done.
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1. Introduction

The study of singular Lagrangian systems was initiated by Dirac [1]. He developed the basic theories
of the classical treatment and quantization of such systems. An alternative method is the Hamilton-Jacobi
formulation, or the canonical method which is developed by Giiler [2, 3]. This method was generalized
to singular systems with higher-order Lagrangian [4, 5]. A treatment of singular Lagrangian system as
field system was studied in [6, 7]. In this work we shall generalize the latter formulation to the higher-
order Lagrangian system. In section two we make a brief discussion of the Hamilton-Jacobi formulation or
canonical method to investigate the higher-order singular system. The generalization of the treatment of
singular Lagrangian system as field system to the higher-order Lagrangian will be done in section three. An
example will be solved in section four.

2. Hamilton-Jacobi Formulation of the Higher-Order Singular
Lagrangian

(1) (2) (3)

The higher-order Lagrangian is described by the function L(g;, qi, qi, Gi, ..., t), where ({;Z) = Za

ats > S =

1) (2
1,2,...and i = 1,2, 3, ...,n. We are concerned with Lagrangian of K-order, which takes the form L(g;, (qi), (qi),

)

(X)
qi 7t)'
The system is regular if the rank of the Hessian matrix [4]
0*L
A = 05w ®
9qidq;
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is n, and singular if the rank is n — r, r < n. The generalized momenta are defined as

oL
P(r-1)i = — 1y (2)
dqi
oL .
P(s—1)i = W_p(s)i; s=1,..K—1, (3)
dqi

where p(x_1); and p(s_1); are the momenta conjugated to the coordinates g;(x—1) and g;(s—1), respectively.
K
Since the rank of the Hessian matrix is n—7, one may solve the derivatives (qi) as functions of the coordinates

K
q(s)i> the momenta p(x _1y,, and the unsolved derivatives (qi), as follows:

(K) (K)

¢ = fx)a((s)is P(k—1)b3 Qi ), (4)
where a,b=1,....n—r,and pu=0,n—7r+1,...,n.

Also the momenta variables will not be independent of one another, and one may write

Pwa = —Hw)alq(s)j; P(s)a); u,8=0,....,K—1,5<u, (5)

where we are assuming that the expression for the momentum p,), depends on all momenta p(s)q-
The Hamiltonian H is defined as

K—2 K—1
(u+1) (u+1)
Hy = Z Pwya 9o +PK-1)af(K)a + Z qu P(u)u|p(s)u:—H(3)u
u=0 u=0

(s) (K) (K)
_L<Qi»qu»% :f(K)a>7 (6)

K
where p, v =0,n—r+1,...,n;a=1,...,n—r. Here Hy does not depend explicitly upon the derivatives (qu),
that is:

9Ho _ (7)
8(K)
Au

Now let us consider the following notations. The time parameter will be denoted #(5)0 = (qso) (for any

value of s). The coordinates g]slz will be denoted £(,),. The momenta p(y), will be denoted as P,),. And the
momentum p(s)0 = P5)0 will be defined as
oS
Pioyo = —, 8
(=)0 = 2 (8)
where S is the action, and H ) = Ho.

Now, to obtain an extremum of the action integral, we must find a function S(t(.).; ¢(c)ar t) (¢ =0, ..., K —
1) that satisfies the set of Hamilton-Jacobi partial differential equations

oS
H{y), = Ployu+ Hsyu <f<u>m A(u)as P(uya = m) =0. 9)
where s,u=0,.... K—1 and u=0,n—7r+1,...,n.
The equations of motion are written as total differential equations as:

K-—1 1
OH(,),

5—0 6p(u)z

At (s)us t=1,...,n, (10)
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- BHZS)M
5—0 6Q(u)c

dp(u)c = - dt(s)uv (11)

where u=0,1,.... K—1,¢c=0,1,....nand p =0,n —r+ 1,...,n. Making Z = S(t(s)u; q(s)a) and using the
momenta definitions together with eq. (10), we have

K-—1 K-—1 aHZd)
dZ = Z —H(d),, + Z D(s)a 3 dt(d)u. (12)
d=0 s=0 P(s)a

This equation together with egs. (10) and (11) are the total differential equations for the characteristics
curves of the Hamilton-Jacobi partial differential equation given by (9); and if they form a completely

integrable set, their solutions determine S (t(s) 4 Q(s)a) uniquely from the initial conditions.

3. A Treatment of the Higher-Order Singular Lagrangian as Field
System

In previous work, the first-order singular Lagrangian system was treated as field system or continuous

system [6]. In this section we shall generalize this proposal to the higher-order singular Lagrangian systems.

1) (2 K
The higher-order singular Lagrangian L = L(g;, (qi), (qi), s (qi), t) can be treated as field system, where the

fields q, are expressed in term of the independent coordinates as

Ga = qa(t,zy), T4 =qp, (13)

where y = O,n —r+1,...,n,a = 1,...,n — r. The Euler-Lagrange equation of the higher-order singular

6_U_i< BL'>+ 9? ( oL’ )
9qa  O0xy \9(0uqa) 0%, 021, \ OOy Oy Ga)

_1\K K /
e (wy, "
021, 0% 1y .0y \ O(Opsy -0y Opugc 4a)

Lagrangian takes the form

where
a
0uqe = —, 15
Mq (9.%'M ( )
qa
01,04.0a = —————, 16
M1 MZq 890;“690“2 ( )
% qa
Ou OO0 Qo = , 17
w1 OO 0y 0% 1y ... 0T 1 (17)
and the modified Lagrangian L’ is defined as
(1) (2) (K)
LI <LL’M, Qa» 6MQa» 6}/&1 6#2 QGv 6}/&1 6#2 "'6Man7 wuv wuv (RS wu)
(1) (1) (2 (1), (1) (K)
= L(.”L‘M, qas 4a = (8MQa)w;u qa = 8u2 (8M1Qawu1)wu27 ~vy Ga (18)
(1) | (1) (1), 1) 2 (K)
= Oy (- (O (041 Qa1 )T p2) s o os TpK )5 Tpps Ty ooy Tpt)
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(s) dx,

. 1)
with 1, = — =

and §co 1.

The constraints equations can be written as

oL’

dGy = ——dt 19
0 ot ) ( )
oL’
AG oy, = — 22 dt, 20
n =" 5 (20)
where
(u)
Go = HO(qi»p(u)avt)v (21)
and
(u)
G(u)u = H(u)u( i, P(u)as t) (22)

are the canonical Hamiltonian and the constraints equations, respectively. Both Hy and H(,), are obtained
from the canonical Hamiltonian formulation of singular system which has been discussed in section 2. The
solution of Euler-Lagrange equation (14), together with the constraint equations (19) and (20), gives the
solution of the system.

An example

Consider the third-order singular Lagrangian [8]

3)3) 2.2 (2 (1), (1) (1)
L=gig2+qi(q2 —q3) + q1(q2 — g3) — q143- (23)

Since the rank of the Hessian matrix of this Lagrangian is two, the system can be treated as field system in
the form

a1 = q1(gs3, t), (24)

g2 = q2(g3,1). (25)

The first, second and third derivatives with respect to ¢ of (24) and (25), respectively, are:

Rl tng 26)
=t dug @)
=T o ) B0y 20 )
=Tl ol ) B ey 22 29)
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and

(ON:

3  Pq Pagr (1 3 Pa (D a2 Pq (s

T = g 3 5ag B 350 (1) 35 1 T g (B

g (1)) g1 (3)

g2 41 23
+ aqg q3 43 + 6q3 g3,

3 Pg P ) B (<1>

g 2 0qa ()5
_ 292 g Y92 ) 3 T2 3= 12
2= 5 3 5ma0® T 3amg (1) T 3 g0g Bt o ()
+362q2<1><2> 8q2<3>

943 B By 9q 3
Substituting (26)—(31) into (23) we get the ?modified Lagrangian” function

O*q <2> Paq

53@71 53@71 (1) 3 q1 (
otoq 3 qu’

(1),
a5 90g T giagr (4

(1)
QS)S

L= q3)? +3

0? Pa @ oq <3>)(63q2 o) W o) (<1>)2 g2 (2)
2 BB T 96, P o T or20g; 1 T P ot dtags 1

9? 9? 1 9?
( (J1+2 q1 (1) Q1

o (()° L Pe0e) | 06 )
o2 " “otogs T T g

-3 | 93 — 303 + =—q3)
5@79?1 5@792, 0q3

Oqy (2 9?
fh())[( (J2+2

Pz (1 Pga (My @) (3
943 2t “otogs T T g

(g3) +63q 42

L (90 O (VY |92 8q2<1> W]
ot " 0gs ) ot " Bgg T BTN

The Euler-Lagrange equations (14) in ¢; and g2 then read as

oL 0 oL’ 0 oL’ o? oL’
o)) e \aGe)) oo (5)
O ( ov )8_( or )a_( ov )
3 o) _3 O o\ _ & (_or ) _,
i \a()) e o)) P \a ()

oL’ o oL ) oL/ )+62( oL’ )12 52 ( or’ )
0q2 0L 0(%)" Ogs 0(32)" " O o(T) T Otdes o(Za)

and
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0% oL 0® oL 3 oL’
+W( 82q2 ) 6t3( 83(12 ) _36t6 2( 83(12 )
a3 6(@) 6( ) a3 8(at8q§)
? oL’ o oL
(a) ~ 53 (5mma) =0 (34)
oo Opmiss) 043 o(5%)

Using equation (32), equations (33) and (34) become

(1) 2) ) (1) )
g 02 @ 0@ 04 0wy 0% O
a3 ot a3 943 a3 943 a3 943 a3 912 a3

@) ®) ®)
6 524 0 4 P2 () Phme) 02 @ 2 (W AL
9togs 1 T " otogs B T Va2 BB T gz BB 6t3
and
®) ®)
o Pa (0 0 W _ o' (o) _ (35)
02 \ ) " To20g; ® T g5t \ P ’

(1) (1) (2) (3) 2
_dul_dalw _dne oww o oot @
o Dgs T 9gs T 9y P o Dtdgs ©

3) @) 3)
PH 0 Phoe 2 ((1))2 a1 963q1 ((@;3))2

4 ga g
506 ? TPag BB T 52 \B) T or " Voiag
(3) 2
63 <1) Pqr ()
_9(%2(9q3 5 <q3> 0. (36)

From the canonical formulation (see Appendix A) the constraint equation (22) formulates as
(2) (2)
dq1 | Oq1 (1) o1 | Oq1 <1>
Gs=| = — | == ) 37
s <8t+6q3q ot g P (37)

The total variation is

o 1) (2) 5(2)
o1 g1 () 0% qq 02 qq <1> 8q1((1))

WG =G T 3%~ T 2506 T a2
6q1 (2)
dt. 38
3, ) (38)
Thus the constraint equation (20) reads as
(2) 2(2) (2) (1) (1)
P, o0 () Dy (), L TRC N T e
((%2 2500 % +aq§( ) 83q) (Wﬁ-a— 3) +q1 =0. (39)

The total derivative of (39) can be written as

3 3 3
63( ) o? (ql) (1) 63(@11) (<1>)2 5 o q1 @ o q1 (<1>)

3
(o + 000, " oo g+

9tdqs g3
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3 2 2 2 2
PHoe e 0 PR o 024
+3Wq3q3+—q3—(
q3 0qs

(1)\9
g 2 giag T o (4)

(1)
dq1 (2) dq1 | Oq1 (1)
+8q3 q3) + ( 5+ 9 q3)

Subtracting (40) from (36) we get
() (2) (3) (3) (3)
G a0 @ g Par ()

92210 —6 ( )2_ — 1 e+ %(2)
9t0gs ° T “9gs B T Vot 9129g 1 T " 0tdgy

(3)
Par e

Using equation (41), Euler-Lagrange equation (36) becomes

(1) (2) (3)
dg | Pa | Pa

-4 =0
dt dt? dt? ’

which has a well known solution.

From equation (64) (in appendix A), the variation of the constraint equation

oL

Go = HO(Qa»xmpa = W)

takes the form

(2) (2)
4) (2 Ooqn  Oq1 (1) 62@71 82q1 (1)

dGg = —q3 + —_— + = + [(—== -
0= (a3 — a3 + as)( ot 0qs a3) + [( ot? Otdqs 1

(2) (2) (1) 1)
(2 Sy S
agz " T Bgs T ot Bgy )
3) ®) 3) ®)
+[(63q2 Pa ) Bg (<1))2+362q2 2)
a5 " Corag T Coog dtdgs =

3) 3) 3) @) @)
R (3 P4 (@ da2) (82q2 L P ()
8q§ 3 8q§ 4343 8qs a3 012 9tdqs a3

2 2 1 1 3

+52(qz)((1))2 @m) (@ @m”(@ %<1>)+[(63(ql)

2 B T g BT o T g BNV ot T 9g, 13
13 P9 o g o

(3) (3) (3)
2 9*q1 (2 63Q1(8?3)3 9*q1 (1(2)

(%2—6%%-1- ﬁ(% a—ngw?,

I S
toqs 0tdgs dq3
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3
6(411) (3)

2) 2) 2) 2)
9% g (1) 0%q1 (), Oq1 (2)

a_qg,%)_( oz 2ot 02 (g3)° + quqs)

1 1
8(411) 6(471) (1), 0g2 | Og2(1),
+(W B—ng?’)](ﬁ 6—%@73)—0-

Using equation (39) and(40), equation (43) leads us to
(3) (3) (3)
(63q2 3 e ) O &
a2 " “ot20g; T “otogz P
(3) (3) (2) (2) (2)
Pa e 096, 042 o076 (1) 0242

3= —
+ 8¢2 q3qs 6q3@73) (62t 6t8q3q3+ 8¢2

(2) (1) (1)
9@, 0%  On®

(4) (2
945 q3) (Bt + 945 q3)

+q3 — g3 +q3=0.

Adding (35) and (44), we get

3) 3) 3) 3)
P P (2 oL@ (0P
9129q; a3 6t8q§ a3 9t a3 6q§ q3qs3
@)
dq3

Using equation (45), Euler-lagrange equation (35) becomes

© @ @ @ @
g2 —q2+q3+ g2 — g3 +q3=0,

or
@ @
F—-F+F=0.

The two equations (42) and (47) give us the solution of the system.

74

(3) (3)
)2 9% q2 (q2) i PP gz &
atdgs " ogd "

(1)
)3

(12

(g3)

2)
g2 (1)
otags 1

(43)
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A Hamilton-Jacobi Treatment of the Lagrangian in eq.(23)

The canonical momenta (2)—(3) are

» oL (;)
(2)1 = ) = q2,
oq
» oL (;)
(2)2 = O] = q1,
g2
oL
P2)s = 3 =0,
dqs3
oL 2 @ @

Payn = RC)) —P@)1 =42 — g3 — q2,
oq

oL . (2 @
P2 = RO P@2)2 =41 — q1,
g2
oL ) (2)
P)s = e — P23 = —4q1,
dqs
oL 1 @O G G 6

PO1= 5 —P1 =42 — @3 — g2+ 43 + q2,
dq

oL . _m 3 (3
Po)2 = e —Paye =49 —q + q,
9q2
oL (YNNG

PO)3 = 3 —Pay3=—q +q-
9q3

Equations (49) and (50) can be solved for ((]31) and ((]32) as

(3)
q1 = P2)2 = f(3)1,

(3)
q2 = P2)1 = f(3)2-

Since the momenta are not independent, p(,), can be written as

(1)
P0)3 = —q1 +Ppe)2 = —H()s,

(2)
P13 = —q1 = —Hs,

(51)

(52)

(53)

(54)
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P23 = 0= —H(2)s.

The Hamiltonian (6), takes the form

(1) (1) 2) 2) 1)
Ho = poy1q1 +Pp0)292 +p1)1q1 + p)2q2 + pe)rfe)1 + pe)2f3)2 + 43003

(2) (1) (2) (3) (3) (3)
+q3p2)3 — L(qis 4> 9i5 43, @1 = [3)1, @2 = f(3)2)s

or
(1) (1) (2) (2) (1)
Ho =p0)1q1 +p0)292 + P1)141 + P(1)292 + P2)1P(2)2 + 43P (2)2
(2)(2) (1))
—q1492 — G192 + q143.

The set of Hamilton-Jacobi equations (9) read as

(1)
Héo)s = po)3 + H)3 = p0)3 + @1 — p2)2 =0,
H, = Hiys = 0 =
(13 =P3+Hayz =pa3+q =0,

Hi{z)3 = p(2)3 + H2)3 = p(ays = 0,

H6=p0+H0=0.

The equations of motion (10)—(11) can be written as

6Hl 6HI 6HI 1 6HI 2 1
dgy = 0t + —— D34y + D3] 4 @3 g Gy,
5]9(0)1 5]9(0)1 5]9(0)1 5]9(0)1
OH! OH! OH' 1 OH' 2 1
dgs = 220 gy 4 O3 g, T3 0N T@8 @ G,
5]9(0)2 5]9(0)2 5]9(0)2 5]9(0)2
1 OH! O0H/ O0H/ 1 O0H/ 2 2
dig) = 0t gy 4 D) B GG Py,
Ip(1) Ip(i)1 Ip(1) Op(1)1

1  OH} dH@HZ(J)s

OH/ OH/
49 (1)3d(1)+ (2)3 (20 (2)

dgs + dgs = ¢odt,

N 5]9(1)2 5]9(1)2 5]9(1)2 @ 5]9(1)2

2) 0H|, b+ 6H20)3 6H21)3d8§+ 6H22)3 (2)

dgi = dgs + dqs = p2)2dt,
! 5]9(2)1 5]9(2)1 ° 5]9(2)1 5]9(2)1 ° (22
2 8HI 6HI 6HI 1 6HI 2
Ay = 0t + — O gy 4 W3 0) 4 @340 (),
5]9(2)2 5]9(2)2 5]9(2)2 5]9(2)2

(1)
+q2)dt — dgs,

76
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oH, ~ OH| OH{yy3 (1) OH(y; (2)
(mm:_ﬁfﬁ_Tﬁﬁwy'ag%%_ @?mﬁ:ﬂﬁ“ (74)
oH! ~ OH| OH{1y3 (1) OH{y; (2)
dp(oy2 = — 5t - a;z)sdqs - a;;)sdqs - —a;z)sdqs =0, (75)
OH! O0H'/ OH/ (1) OH'/ (2)
dp(oy3 = _W;dt - 6;2)3@3 - 8;:3@3 - 6;)3@3 = —qudt, (76)
0H OH (g3 OH(y)5 (1) OH{y; (2
dpay = ——ydt = —=dgs = —5=dgs — —5=d
oq oq oq oq
(1)
= —(peoy1 — q2)dt — dgs, (77)
OH}, 6H20)3 6H21)3 (1) 6Héz)s (2)
dpay2 = ——ydt = —=das = —5=das = —
9q2 g2 9q2 g2
(1)
= —(poy2 — q1)dt, (78)
OH}, 6H20)3 6H21)3 (1) 6Héz)s (2)
dp(1)3 = — D dt — 0 dqs — D dqs — D dqs = —p(2)2dt, (79)
93 dqs3 dq3 dqs3
OH, 6H20)3 6H21)3 (1) 6Héz)s (2)
dpap = ——5ydt = —o=day = —omdas — —=d
oq oq oq oq
2 1
= —(pan — (qz))dt - d(qs), (80)
‘9H6 6H20)3 ‘9H21)3 (1) ‘9H22)3 (2)
dp(2)2 = ~ @ dt — @ dgs — ) dqs — 2 dgs
9g2 g2 9q2 g2
(2)
= —(p)2 — q1)dt, (81)
O0H), OH (g3 OH(1)5 (1) OH{y; (3
dp =~y - Moy Mo gy Moy, o
93 dqs 9q3 dq3

The system of total differential equations (68)-(82)is integrable if the variation of H{,), is identically zero.

The variation of Héo)s is

dH! . = d + g =(—q1 +
(0)3 P0)3 dq dp(2)2 (—¢ P(1)2)df- (83)
Since dH, 20)3 is not identically zero we have a new constraint:

(03 = —@ + P12 (84)



FARAHAT, HELES

The variation of H26)3 is

dH ()3 = —dgq1 + dp()2 = —p(0)24dt.

Again, as dH 26)3 is not identically zero, we have

H{g)3 = —P(0)2-
Using (75), the variation of H 26')3 is identically zero,
dHZIOI)S = —dp(o)Q =0.
From (87) we have
P2 = C.
Using equation (55) we get

(1) (3 (3
ga—-—qg+aqg=C=C_

or
2 4 6

The variation of HZl)S in (65) is

(2)
dHZl)S = dp(l)g + dql =0.
Finally, the variation of H 22)3 is

dHZ2)3 = dp(2)3 = 0

From (87), (91) and (92), we conclude that the system is integrable.

equation of (73) is

(2)
942 _ 4

dq3 B
and its solution is

(2)
q2 = —q3 + F(t)

or

(2)
F(t) = g2 + g3

The second and forth derivatives of (95) can be written as

@ _@w, @

F=q2+ g3,

@ _©, @

F =g +gs.
Equations (54) and (74) together take the form,

6 @ @ @ @
G2 —q2+qg3s+q—q3+q3=0

Using equations (95), (96) and (97), equation (98) becomes

(GO )]
F—-F+F=0.

Equations (90) and (99) are equivalent to (42) and (47), respectively.

78

(91)

(92)

The equivalent partial differential
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4. Conclusion

The treatment of the first-order singular Lagrangian system as field system has been discussed in previous
work [6]. The development of this treatment to a second-order singular Lagrangian was done in [7]. In this
work, the same method is generalized to study the higher-order singular Lagrangian system, which contains
the time derivative of the acceleration. The Euler-Lagrange equations for field system are used to obtain
the equations of motion for the higher-order singular Lagrangian system. Simultaneous solution of the
Euler-Lagrange equations with the constraints equations gives us the solution of the dynamical system.
As in the first and the second order singular Lagrangian systems, constraints equations are obtained from
the Hamilton-Jacobi approach for singular system. This means that both Hamiltonian and Lagrangian
formulations of singular systems are mixed.
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